Chin. J. Org. Chem. ›› 2013, Vol. 33 ›› Issue (10): 2046-2062.DOI: 10.6023/cjoc201304026 Previous Articles Next Articles
Reviews
戴小军, 许孝良, 李小年
收稿日期:
2013-04-18
修回日期:
2013-05-09
发布日期:
2013-05-24
通讯作者:
许孝良, 李小年
E-mail:xuxiaoliang@zjut.edu.cn; xnli@zjut.edu.cn
基金资助:
国家重点基础研究发展计划(973计划, No. 2011CB710800)和浙江省自然科学基金(No. LY12B02017)资助项目
Dai Xiaojun, Xu Xiaoliang, Li Xiaonian
Received:
2013-04-18
Revised:
2013-05-09
Published:
2013-05-24
Supported by:
Project supported by the National Basic Research Program of China (973 Program, No. 2011CB710800) and the Zhejiang Provincial Natural Science Foundation of China (No. LY12B02017).
Share
Dai Xiaojun, Xu Xiaoliang, Li Xiaonian. Applications of Visible Light Photoredox Catalysis in Organic Synthesis[J]. Chin. J. Org. Chem., 2013, 33(10): 2046-2062.
[1] Ciamician, G. Science 1912, 36, 385.[2] Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785.[3] Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.[4] Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.[5] Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.[6] Shi, L.; Xia, W. J. Chem. Soc. Rev. 2012, 41, 7687.[7] You, Y.; Nam, W. Chem. Soc. Rev. 2012, 41, 7061.[8] Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.[9] Xi, Y. M.; Yi, H.; Lei, A. W. Org. Biomol. Chem. 2013, 11, 2387.[10] Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.[11] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.[12] Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875.[13] Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600.[14] Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Angew. Chem., Int. Ed. 2011, 50, 951.[15] Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2011, 50, 6119.[16] Cherevatskaya, M.; Neumann, M.; Füldner, S.; Harlander, C.; Kümmel, S,; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; König, B. Angew. Chem., Int. Ed. 2012, 51, 4062.[17] Koike, T.; Akita, M. Chem. Lett. 2009, 38, 166.[18] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.[19] Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604.[20] Ischay, M. A.; Lu, X.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.[21] Du, J.; Espelt, L. R.; Guzei, I. A.; Yoon, T. P. Chem. Sci. 2011, 2, 2115.[22] Hurtley, A .E.; Cismesia, M. A.; Ischay, M. A.; Yoon, T. P. Tetrahedron 2011, 67, 4442.[23] Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162.[24] Maity, S.; Zhu, M.; Shinabery R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222.[25] Lin, S. S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350.[26] Tyson, E. L.; Farney, E. P.; Yoon, T. P. Org. Lett. 2012, 14, 1110.[27] Parrish, J. D.; Ischay, M. A.; Lu, Z.; Guo, S.; Peters, N. R.; Yoon, T. P. Org. Lett. 2012, 14, 1640.[28] Lin, S. S.; Padilla, C. E.; Ischay, M. A.; Yoon, T. P. Tetrahedron Lett. 2012, 53, 3073.[29] Zou, Y. Q.; Duan, S. W.; Meng, X. G.; Hu, X. Q.; Gao, S.; Chena, J. R.; Xiao, W. J. Tetrahedron 2012, 68, 6914.[30] Ischay, M. A.; Ament, M. S.; Yoon, T. P. Chem. Sci. 2012, 3, 2807.[31] Lu, Z.; Yoon, T. P. Angew. Chem. 2012, 124, 10475.[32] Deng, G. B. Wang, Z. Q.; Xia, J. D.; Qian, P. C.; Song, R. J.; Hu, M.; Gong, L. B.; Li, J. H. Angew. Chem., Int. Ed. 2013, 52, 1535.[33] Mashraqui, S. H.; Kellogg, R. M. Tetrahedron Lett. 1985, 26, 1453.[34] Fukuzumi, S.; Mochizuki, S.; Tanaka T. J. Phys. Chem. 1990, 94, 722.[35] Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756.[36] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Org. Lett. 2011, 13, 2046.[37] Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.[38] Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 368.[39] Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Chem. Commun. 2010, 46, 4985.[40] Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3104.[41] Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem, Int. Ed. 2011, 50, 9655.[42] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.[43] Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2011, 13, 5468.[44] Ju, X. H.; Liang, Y.; Jia, P. J.; Li, W. F.; Yu, W. Org. Biomol. Chem. 2012, 10, 498.[45] Kim, H.; Lee, C. Angew. Chem., Int. Ed. 2012, 51, 12303.[46] Liu, Q.; Yi, H.; Liu, J.; Yang, Y. H.; Zhang, X.; Zeng, Z. Q.; Lei. A. W. Chem. Eur. J. 2013, 19, 5120.[47] Nguyen, J. D.; Tucker, J. W.; Konieczynska, M, D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.[48] Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O. Chem. Eur. J. 2012, 18, 7336.[49] Wallentin, C. J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.[50] Maidan, R.; Goren, Z.; Becker, J. Y.; Willner, I. J. Am. Chem. Soc. 1984, 106, 6217.[51] Goren, Z.; Willner, I. J. Am. Chem. Soc. 1983, 105, 7764.[52] Maidan, R.; Willner, I. J. Am. Chem. Soc. 1986, 107, 1080.[53] Mandler, D.; Willner, I. J. Am. Chem. Soc. 1984, 106, 5352.[54] Willner, I.; Tsfania, T.; Eichen, Y. J. Org. Chem. 1990, 55, 2656.[55] Maji, Tapan.; Karmakar, Ananta.; Reiser, Oliver. J. Org. Chem. 2011, 76, 736.[56] Dai, C. H.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140.[57] Su, Y. J.; Zhang, L. R.; Jiao, N. Org. Lett. 2011, 13, 2168.[58] Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.[59] Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.[60] Rueping, M.; Zhu S. Q.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.[61] Hari, D. P.; König, B. Org. Lett. 2011, 13, 3852.[62] Rueping, M.; Zhu, S. Q.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709.[63] Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94.[64] Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Chem. Eur. J. 2012, 18, 3478.[65] Zhao, G. L.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. J. Chem. Commun. 2012, 48, 2337.[66] Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Chem. Eur. J. 2012, 18, 5170.[67] Xuan, J.; Cheng, Y.; An, J.; Lu, L. Q.; Zhang, X. X.; Xiao, W. J. Chem. Commun. 2011, 47, 8337.[68] Xuan, J.; Feng, Z. J.; Duan, S. W.; Xiao, W. J. RSC Adv. 2012, 2, 4065.[69] DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.[70] Dai, C. H.; Meschini, F.; Narayanam, J. M. R.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 4425.[71] Wang, Z. Q.; Hu, M.; Huang, X. C.; Gong, L. B. Xie, Y. X.; Li, J. H. J. Org. Chem. 2012, 77, 8705.[72] Zhu, S. Q.; Rueping, M. Chem. Commun. 2012, 48, 11960.[73] Pan, Y. H.; Wang, S. A.; Kee, C. W.; Dubuisson, E.; Yang, Y. Y.; Loh, K. P.; Tan. C. H. Green Chem. 2011, 13, 3341.[74] Fu, W. J.; Guo, W. B.; Zou, G. L.; Xu, C. J. Fluorine Chem. 2012, 140, 88.[75] Zou, Y. Q.; Lu, L. Q.; Fu, L.; Chang, N. J.; Rong, J.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed. 2011, 50, 7171.[76] Rueping, M.; Leonori, D.; Poisson, T. Chem. Commun. 2011, 47, 9615.[77] Courant, T.; Masson, G. Chem. Eur. J. 2012, 18, 423.[78] Park, J. H.; Ko, K. C.; Kim, E.; Park, N.; Ko, J. H.; Ryu, D. H.; Ahn, T. K.; Lee, J. Y.; Son, S. U. Org. Lett. 2012, 14, 5502.[79] Cai, S. Y.; Zhao, X. Y.; Wang, X. B.; Liu, Q. S.; Li, Z. G.; Wang, D. Z. Angew. Chem. 2012, 124, 8174.[80] Jiang, H.; Huang, C. M.; Guo, J. J.; Zeng, C. Q.; Zhang, Y.; Yu, S. Y. Chem. Eur. J. 2012, 18, 15158.[81] Yoo, W.-J.; Tanoue, A.; Kobayashi, S. Chem. Asian J. 2012, 7, 2764.[82] Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2012, 48, 5355.[83] McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114.[84] Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672.[85] Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am. Chem. Soc. 2012, 134, 3338.[86] Miyake, Y.; Ashida, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2012, 48, 6966.[87] Maity, S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562.[88] Ju, X. H.; Li, D. J.; Li, W. F.; Yu, W.; Bian, F. L. Adv. Synth. Catal. 2012, 354, 3561.[89] Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Eur. J. 2012, 18, 16473.[90] Zhu, S. Q.; Das, A.; Bui, L.; Zhou, H. J.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823.[91] Cano-Yelo, H.; Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984, 1093.[92] Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134, 2958.[93] Schroll, P.; Hari, D. P.; König, B. ChemistryOpen 2012, 1, 130.[94] Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334.[95] Hering, T.; Hari, D. P.; König, B. J. Org. Chem. 2012, 77, 10347.[96] Chen, M.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2012, 48, 11686.[97] Cheng, Y. N.; Yang, J.; Qu, Y.; Li, P. Org. Lett. 2012, 14, 98.[98] Tyson, E. L.; Ament, M. S.; Yoon, T. P. J. Org. Chem. 2013, 78, 2046.[99] Borak, J. B.; Falvey, D. E. J. Org. Chem. 2009, 74, 3894.[100] Edson, J. B.; Spencer, L. P.; Boncella, J. M. Org. Lett. 2011, 13, 6156.[101] Hasegawa, E.; Takizawa, S.; Seida, T.; Yamaguchi, A.; Yamaguchi, N.; Chiba, N.; Takahashi, T.; Ikeda, H.; Akiyama, K. Tetrahedron 2006, 62, 6581.[102] Larraufie, M. H.; Pellet, R.; Fensterbank, L.; Goddard, J. P.; Lacôte, E.; Malacria, M.; Ollivier, C. Angew. Chem. 2011, 123, 4555.[103] Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.[104] Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53, 2005.[105] Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.[106] Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 2037.[107] Liu, Q.; Li, Y. N.; Zhang, H. H.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Org. Chem. 2011, 76, 1444.[108] Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784.[109] Sun, H. N.; Yang, C.; Gao, F.; Li, Z.; Xia, W. J. Org. Lett. 2013, 15, 624.[110] Hirao, T.; Shiori, J.; Okahata, N. Bull. Chem. Soc. Jpn. 2004, 77, 1763.[111] Gazi, S.; Ananthakrishnan, R. Appl. Catal. B 2011, 105, 317.[112] Chen, Y. Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R. Nat. Chem. 2011, 3, 146.[113] Zhao, G. L.; Yang, C.; Guo, L.; Sun, H. N.; Lin, R.; Xia, W. J. J. Org. Chem. 2012, 77, 6302.[114] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.[115] Bou-Hamdan, F. R.; Seeberger, P. H. Chem. Sci. 2012, 3, 1612.[116] Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2012, 51, 4144.[117] Nguyen, J. D.; Reiß, B.; Dai, C. H.; Stephenson, C. R. J. Chem. Commun. 2013, 49, 4352.[118] Neumann, M. Zeitler, K.; Org. Lett. 2012, 14, 2658. |
[1] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[2] | Jing Huang, Yihua Yang, Zhanhui Zhang, Shouxin Liu. Recent Progress on Green Methods and Technologies for Efficient Formation of Amide Bonds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 409-420. |
[3] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[4] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[5] | Yixin Jiang, Boxiao Tang, Haibo Mao, Xuexia Chen, Yangjie Yu, Cuiying Quan, Zhaoyang Xu, Jinhui Shi, Yilin Liu. A Green, Recyclable and Carrier-Free Study for the Coupling Reaction of Alkenes with Aryl Iodides in H2O-Polyethylene Glycol (PEG-200) [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3210-3215. |
[6] | Ran Zhou, Chunmei Yuan, Tao Zhang, Piao Mao, Yi Liu, Kaini Meng, Hui Xin, Wei Xue. Design, Synthesis and Bioactivity of Chalcone Derivative Containing Quinazolinone [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3196-3209. |
[7] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[8] | Kai Lu, Haoqi Qu, Xi Chen, Hui Qiu, Jing Zheng, Mengtao Ma. Catalyst-Free and Solvent-Free Hydroboration of Alkynes and Alkenes with Catecholborane [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2197-2205. |
[9] | Qian Dou, Taimin Wang, Lijing Fang, Hongbin Zhai, Bin Cheng. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1386-1415. |
[10] | Shiquan Gao, Chuangjun Liu, Junfeng Yang, Junliang Zhang. Cobalt-Catalyzed Electrochemical Reductive Coupling of Alkynes and Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1559-1565. |
[11] | Linsheng Bai, Peng Hong, Anguo Ying. Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1241-1270. |
[12] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[13] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
[14] | Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3470-3490. |
[15] | Silin Chen, Yunhui Yang, Chao Chen, Congyang Wang. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||