Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (9): 2949-2955.DOI: 10.6023/cjoc202004007 Previous Articles     Next Articles

一种检测活细胞内铜离子的“关-开”型近红外荧光探针

房茹a, 丁旭a, 罗稳a, 洪琛b   

  1. a 河南大学 河南省天然药物与免疫工程重点实验室 河南开封 475004;
    b 河南大学淮河医院 河南开封 475000
  • 收稿日期:2020-04-03 修回日期:2020-05-27 发布日期:2020-06-28
  • 通讯作者: 罗稳, 洪琛 E-mail:luowen83@163.com;hongchenbest@163.com
  • 基金资助:
    国家自然科学基金(No.U1704176)、河南省科技计划(No.182102310504)、开封市科技局(No.1903004)和河南大学医学院青年人才(No.2019005)资助项目.

An “Off-On” Near-Infrared Fluorescent Probe for Cu2+ Detection in Living Cells

Fang Rua, Ding Xua, Luo Wena, Hong Chenb   

  1. a Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004;
    b Huaihe Hospital, Henan University, Kaifeng, Henan 475000
  • Received:2020-04-03 Revised:2020-05-27 Published:2020-06-28
  • Supported by:
    Project supported by the National Natural Science Foundation of China (No. U1704176), the Science and Technology Planning Project of Henan Province (No. 182102310504), the Science and Technology Administration of Kaifeng City (No. 1903004) and the Young Talents Program of Medical School of Henan University (No. 2019005).

A near-infrared fluorescent probe (6) was designed and synthesized by using 2-(6-(dimethylamino)naphthalen-2-yl)-7-hydroxy-4H-chromen-4-one as report group and 2-picolinate as recognition group. The probe was identified by 1H NMR, 13C NMR, MS and elemental analysis. The probe could react specifically with Cu2+ and its fluorescence intensity increased obviously at 655 nm, at the meantime, the color change of the solution can be seen by naked eyes. A linear relationship was obtained between the fluorescence intensity and concentration of Cu2+ in the range of 0~2.0×10-5 mol/L, and the detection limit was 3.2×10-8 mol/L. The mechanism study showed that Cu2+ catalyzed the cleavage of the ester bond and strongly fluorescent 2-[6-(N,N-dimethylamino)naphthyl]-7-hydroxy-4H-chromen-4-one (5) was generated. In addition, the probe 6 could be used for fluorescence imaging of Cu2+ in living cells.

Key words: flavone, copper ion, near-infrared, fluorescent probe