Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (2): 622-628.DOI: 10.6023/cjoc202206033 Previous Articles Next Articles
收稿日期:
2022-06-19
修回日期:
2022-09-29
发布日期:
2022-11-07
Tingting Liua,b, Yucai Hua, An Shena()
Received:
2022-06-19
Revised:
2022-09-29
Published:
2022-11-07
Contact:
*E-mail: Share
Tingting Liu, Yucai Hu, An Shen. Mechanism of Carbon-Carbon Coupling Reactions Catalyzed by Imine-Ligand-Assisted N-Heterocyclic Carbene Palladium Complexes[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 622-628.
Intermediate/ transition state | NHC-Pd A | NHC-Pd B | NHC-Pd C | |||||
---|---|---|---|---|---|---|---|---|
GAS | SMD | GAS | SMD | GAS | SMD | |||
I1 | -4.2 | -0.1 | -3.7 | 0.6 | -5.6 | -0.6 | ||
TS1 | 21.5 | 20.0 | 20.6 | 20.8 | 20.9 | 21.0 | ||
ΔG≠(TS1) | 25.7 | 20.1 | 24.3 | 20.2 | 26.5 | 21.6 | ||
I2 | 0.5 | 3.1 | 0.0 | 3.4 | 0.7 | 4.5 | ||
I3 | -11.8 | -12.9 | -11.3 | -12.5 | -10.3 | -11.2 | ||
TS2 | 3.6 | 5.2 | 3.2 | 4.8 | 3.7 | 6.2 | ||
ΔG≠(TS2) | 15.3 | 18.1 | 14.6 | 17.3 | 14.0 | 17.4 | ||
I4 | -25.5 | -25.5 | -23.5 | -22.1 | -18.0 | -13.8 | ||
I5a | -11.5 | -13.5 | -11.2 | -13.8 | -11.7 | -13.9 | ||
I5a-I4 | - | 12 | - | 8.3 | - | -0.1 | ||
I6a | -23.0 | -23.4 | -22.7 | -23.7 | -23.2 | -23.8 | ||
TS3a | -9.6 | -6.4 | -9.4 | -6.7 | -9.8 | -6.8 | ||
ΔG≠(TS3a) | 13.4 | 17.0 | 13.4 | 17.0 | 13.4 | 17.0 | ||
I7 | -14.6 | -22.0 | -14.3 | -22.3 | -14.8 | -22.5 |
Intermediate/ transition state | NHC-Pd A | NHC-Pd B | NHC-Pd C | |||||
---|---|---|---|---|---|---|---|---|
GAS | SMD | GAS | SMD | GAS | SMD | |||
I1 | -4.2 | -0.1 | -3.7 | 0.6 | -5.6 | -0.6 | ||
TS1 | 21.5 | 20.0 | 20.6 | 20.8 | 20.9 | 21.0 | ||
ΔG≠(TS1) | 25.7 | 20.1 | 24.3 | 20.2 | 26.5 | 21.6 | ||
I2 | 0.5 | 3.1 | 0.0 | 3.4 | 0.7 | 4.5 | ||
I3 | -11.8 | -12.9 | -11.3 | -12.5 | -10.3 | -11.2 | ||
TS2 | 3.6 | 5.2 | 3.2 | 4.8 | 3.7 | 6.2 | ||
ΔG≠(TS2) | 15.3 | 18.1 | 14.6 | 17.3 | 14.0 | 17.4 | ||
I4 | -25.5 | -25.5 | -23.5 | -22.1 | -18.0 | -13.8 | ||
I5a | -11.5 | -13.5 | -11.2 | -13.8 | -11.7 | -13.9 | ||
I5a-I4 | - | 12 | - | 8.3 | - | -0.1 | ||
I6a | -23.0 | -23.4 | -22.7 | -23.7 | -23.2 | -23.8 | ||
TS3a | -9.6 | -6.4 | -9.4 | -6.7 | -9.8 | -6.8 | ||
ΔG≠(TS3a) | 13.4 | 17.0 | 13.4 | 17.0 | 13.4 | 17.0 | ||
I7 | -14.6 | -22.0 | -14.3 | -22.3 | -14.8 | -22.5 |
[1] |
Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 247.
doi: 10.1021/acs.chemrev.6b00826 |
[2] |
Xia, Y.; Qiu, D.; Wang J. B. Chem. Rev. 2017, 117, 13810.
doi: 10.1021/acs.chemrev.7b00382 |
[3] |
Bolm, C.; Hildebrand, J. P.; Muñiz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284.
|
[4] |
Andrea, B.; Paolo, C.; Alessandro, D. Z.; Marco, Z. Chem. Rev. 2018, 118, 2249.
doi: 10.1021/acs.chemrev.7b00443 pmid: 29460627 |
[5] |
Begur, V. V.; Jayaraman, D.; Kiran, R. B.; Yogesh, S.; Kaliyamoorthy, A.; Kandikere, R. P. Tetrahedron Lett. 2017, 58, 803.
doi: 10.1016/j.tetlet.2017.01.035 |
[6] |
Zhang, T. X.; Li, Z. Comput. Theor. Chem. 2013, 1016, 28.
doi: 10.1016/j.comptc.2013.04.015 |
[7] |
Qian, H.; Yin, Z.; Zhang, T.; Yan, S.; Wang, Q.; Zhang, C. Organometallics 2014, 33, 6241.
doi: 10.1021/om5008924 |
[8] |
Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Lledós, A.; Maseras, F. J. Organomet. Chem. 2006, 691, 4459.
doi: 10.1016/j.jorganchem.2006.02.015 |
[9] |
Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S. Organometallics 2005, 24, 2319.
doi: 10.1021/om050160p |
[10] |
Proutiere, F.; Lyngvi, E.; Aufiero, M.; Sanhueza, I. A.; Schoenebeck, F. Organometallics 2014, 33, 6879.
doi: 10.1021/om5009605 |
[11] |
Raders, S. M.; Moore, J. N.; Parks, J. K.; Miller, A. D. J. Org. Chem. 2013, 78, 4649.
doi: 10.1021/jo400435z |
[12] |
Wang, S. Tetrahedron Lett. 1997, 38, 5575.
doi: 10.1016/S0040-4039(97)01261-6 |
[13] |
Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
doi: 10.1021/ja0002058 |
[14] |
Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553.
doi: 10.1021/jo025732j |
[15] |
Jensen, J. F.; Johannsen, M. Org. Lett. 2003, 5, 3025.
pmid: 12916972 |
[16] |
Yee, K. F.; Chan, K. S.; Hung, Y. C.; Chan, A. S. C. Chem. Commun. 2004, 36, 2336.
|
[17] |
Titcomb, L. R.; Caddick, S.; Cloke, F. G. N.; Wilson, D. J.; Mckerrecher, D. Chem. Commun. 2001, 15, 1388.
|
[18] |
Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101.
doi: 10.1021/ja057704z |
[19] |
Schneider, S. K.; Herrmann, W. A.; Herdtweck, E. J. Mol. Catal. A: Chem. 2006, 245, 248.
doi: 10.1016/j.molcata.2005.08.046 |
[20] |
Viciu, M. S.; Germaneau, R. F.; Nolan, S. P. Org. Lett. 2002, 4, 4053.
doi: 10.1021/ol026745m |
[21] |
Viciu, M. S.; Kelly, R. A.; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. Org. Lett. 2003, 5, 1479.
doi: 10.1021/ol034264c |
[22] |
Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101.
doi: 10.1021/ja057704z |
[23] |
Jackstell, R.; Andreu, M. G.; Frisch, A.; Selvakumar, K.; Zapf, A.; Klein, H.; Spannenberg, A.; Röttger, D.; Briel, O.; Karch, R.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 986.
|
[24] |
O’Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; A. Hopkinson, C.; Organ, M. G. Chem.-Eur. J. 2006, 12, 4743.
doi: 10.1002/chem.200600251 |
[25] |
Kantchev, E. A.; O’Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768.
doi: 10.1002/anie.200601663 |
[26] |
Organ, M. G.; Çlimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Angew. Chem., Int. Ed. 2009, 48, 2383.
doi: 10.1002/anie.200805661 |
[27] |
Valente, C.; Calimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
doi: 10.1002/anie.201106131 |
[28] |
Pompeo, M.; Froese, R. D. J.; Hadei, N.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 11354.
doi: 10.1002/anie.201205747 |
[29] |
Tang, Y. Q.; Lu, J. M.; Shao, L. X. J. Organomet. Chem. 2011, 696, 3741.
doi: 10.1016/j.jorganchem.2011.08.042 |
[30] |
Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440.
doi: 10.1021/ar800020y |
[31] |
Nasielski, J.; Hadei, N.; Achonduh, G.; Kantchev, E. A. B.; O’Brien, C. J.; Lough, A.; Organ, M. G. Chem.-Eur. J. 2010, 16, 10844.
doi: 10.1002/chem.201000138 pmid: 20665575 |
[32] |
Shen, A.; Ni, C.; Cao, Y. C.; Zhou, H.; Song, G. H. Tetrahedron Lett. 2014, 55, 3278.
doi: 10.1016/j.tetlet.2014.04.044 |
[33] |
Shen, A.; Hu, Y. C.; Liu, T. T.; Ni, C.; Luo, Y.; Cao, Y. C. Tetrahedron Lett. 2016, 57, 2055.
doi: 10.1016/j.tetlet.2016.03.086 |
[34] |
Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset, M. J. Am. Chem. Soc. 2014, 136, 7300.
doi: 10.1021/ja412565c pmid: 24824779 |
[35] |
Kuwabe, S. I.; Torraca, K. E.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 12202.
pmid: 11734019 |
[36] |
Zhang, L.; Yang, C.; Guo, X.-F.; Mo, F.-Y. Chin. J. Org. Chem. 2021, 41, 3492. (in Chinese)
doi: 10.6023/cjoc202103040 |
(张雷, 杨晨, 郭雪峰, 莫凡洋, 有机化学, 2021, 41, 3492.)
doi: 10.6023/cjoc202103040 |
|
[37] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
|
[38] |
Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
doi: 10.1021/ar700111a |
[39] |
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
doi: 10.1021/jp810292n |
[1] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[2] | Cunjing Miao, Jiaqi Yao. Recent Advances in the Transformation Reactions of Aromatic Nitriles via C—CN Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1341-1364. |
[3] | Yueling Liu, Xinxin Zhong, Ganbing Zhang. Density Functional Theory Study for Exploring the Mechanisms of the [3+2] Cycloaddition Reactions between 1-R-3-Phenylpropylidenecyclopropane (R=Me/H) and Furfural Catalyzed by Pd(0) [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 660-667. |
[4] | Zexin Huang, Yuqiang Yin, Fengcheng Jia, Anxin Wu. Research Progress on C2—C3 Bond Cleavage of Indole and Its Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2028-2044. |
[5] | Yubing Shi, Wenji Bai, Weihua Mu, Jiangping Li, Jiawei Yu, Bing Lian. Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1346-1374. |
[6] | Youcai Zhu, Xinxin Ding, Li Sun, Zhen Liu. Advances in the Production of Acrylic Acid and Its Derivatives by CO2/C2H4 Coupling [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 965-977. |
[7] | Zheng Li, Yingchun Gu, Dazhen Xu, Xuening Fei, Lei Zhang. Density Functional Theory Study on the Mechanism of Organophosphine-Catalyzed [4+2] Cycloaddition Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 830-837. |
[8] | Man Xu, Yuanzhi Xia. Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3272-3278. |
[9] | Kai Yang, Meijuan Liu, Yu'na Zhang, Jiaqi Zhan, Luxuan Deng, Xuejie Zheng, Yongjun Zhou, Zhaoyang Wang. Progress in the Synthesis of Benzoheterocycles from 2-Halobenzamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2175-2187. |
[10] | Fengcheng Jia, Na Luo, Cheng Xu, Anxin Wu. Recent Advances in the Synthesis of Benzoheterocyclic Compounds Involving Isatins [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1527-1542. |
[11] | Liang Liu, Wenbo Liu, Dong-Mei Cui, Ming Zeng. Progress in the Synthesis of Aroyl Compounds [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4289-4305. |
[12] | Xu Xinming, Yang Hanlin, Li Wenzhong. Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1912-1925. |
[13] | Li Zhifeng, Wang Wenpeng, Wang Xicun, Quan Zhengjun. Mechanism of Synthesis of Phosphinecarboxamides by Reaction of Sodium Phosphaethynolate Anion and Amines under Acid-Free Conditions: Density Functional Theory Investigation [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1563-1570. |
[14] | Xu Xinming, Li Jiazhu, Wang Zuli. Recent Advances in Transition Metal-Free Sulfenylation of Indoles [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 886-898. |
[15] | Dong Daoqing, Sun Yuanyuan, Li Guanghui, Yang Huan, Wang Zuli, Xu Xinming. Recent Progress in the Functionalization of Quinoline N-Oxide [J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4071-4086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||