Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (11): 3989-3996.DOI: 10.6023/cjoc202304013 Previous Articles Next Articles
收稿日期:
2023-04-10
修回日期:
2023-06-05
发布日期:
2023-06-26
基金资助:
Binghao Huo(), Conghui Guo, Zhanhui Xu()
Received:
2023-04-10
Revised:
2023-06-05
Published:
2023-06-26
Contact:
E-mail: Supported by:
Share
Binghao Huo, Conghui Guo, Zhanhui Xu. Mn(acac)3 Promoted Radical Oxidative Coupling Reaction of Enol Esters with Phosphites to Synthesize β-Ketophosphonates[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3989-3996.
Entry | Oxidant (equiv.) | Additive (equiv.) | Solvent | Temp./℃ | Time/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | Mn(acac)3 (1.5) | CH3CN | 80 | 6 | 55 | |
2 | Mn(OAc)3 (1.5) | CH3CN | 80 | 6 | Trace | |
3 | Mn(acac)2 (1.5) | CH3CN | 80 | 6 | 32 | |
4 | K2S2O8 (1.5) | CH3CN | 80 | 6 | NDf | |
5 | NH4S2O8 (1.5) | CH3CN | 80 | 6 | NDf | |
6 | DTBP (1.5) | CH3CN | 80 | 6 | NDf | |
7 | TBHP (1.5) | CH3CN | 80 | 6 | NDf | |
8 | H2O2 (1.5) | CH3CN | 80 | 6 | Trace | |
9 | Mn(acac)3 (0.2)+DTBP (1.5) | CH3CN | 80 | 6 | Trace | |
10 | Mn(acac)3 (0.2)+K2S2O8 (1.5) | CH3CN | 80 | 6 | NDf | |
11 | Mn(acac)3 (1.5) | 1,4-Dioxane | 80 | 6 | 46 | |
12 | Mn(acac)3 (1.5) | THF | 80 | 6 | 38 | |
13 | Mn(acac)3 (1.5) | DCE | 80 | 6 | 43 | |
14 | Mn(acac)3 (1.5) | EA | 80 | 6 | 58 | |
15 | Mn(acac)3 (1.5) | DMF | 80 | 6 | 32 | |
16 | Mn(acac)3 (1.5) | NMP | 80 | 6 | Trace | |
17 | Mn(acac)3 (2.0) | CH3CN | 80 | 6 | 70 | |
18 | Mn(acac)3 (3.0) | CH3CN | 80 | 6 | 81 | |
19 | Mn(acac)3 (4.0) | CH3CN | 80 | 6 | 72 | |
20 | Mn(acac)3 (3.0) | CH3CN | 80 | 6 | 74c | |
21 | Mn(acac)3 (3.0) | CH3CN | 80 | 6 | 85d | |
22 | Mn(acac)3 (3.0) | CH3CO2H (2.0) | CH3CN | 80 | 6 | 51 |
23 | Mn(acac)3 (3.0) | C4H9CO2H (2.0) | CH3CN | 80 | 6 | 56 |
24 | Mn(acac)3 (3.0) | NEt3 (2.0) | CH3CN | 80 | 6 | 61 |
25 | Mn(acac)3 (3.0) | DBU (2.0) | CH3CN | 80 | 6 | 48 |
26 | Mn(acac)3 (3.0) | — | CH3CN | 60 | 6 | 72 |
27 | Mn(acac)3 (3.0) | — | CH3CN | 100 | 6 | 66 |
28 | Mn(acac)3 (3.0) | — | CH3CN | 80 | 4 | 69 |
29 | Mn(acac)3 (3.0) | — | CH3CN | 80 | 8 | 79 |
30e | Mn(acac)3 (3.0) | — | CH3CN | 80 | 6 | 82e |
Entry | Oxidant (equiv.) | Additive (equiv.) | Solvent | Temp./℃ | Time/h | Yieldb/% |
---|---|---|---|---|---|---|
1 | Mn(acac)3 (1.5) | CH3CN | 80 | 6 | 55 | |
2 | Mn(OAc)3 (1.5) | CH3CN | 80 | 6 | Trace | |
3 | Mn(acac)2 (1.5) | CH3CN | 80 | 6 | 32 | |
4 | K2S2O8 (1.5) | CH3CN | 80 | 6 | NDf | |
5 | NH4S2O8 (1.5) | CH3CN | 80 | 6 | NDf | |
6 | DTBP (1.5) | CH3CN | 80 | 6 | NDf | |
7 | TBHP (1.5) | CH3CN | 80 | 6 | NDf | |
8 | H2O2 (1.5) | CH3CN | 80 | 6 | Trace | |
9 | Mn(acac)3 (0.2)+DTBP (1.5) | CH3CN | 80 | 6 | Trace | |
10 | Mn(acac)3 (0.2)+K2S2O8 (1.5) | CH3CN | 80 | 6 | NDf | |
11 | Mn(acac)3 (1.5) | 1,4-Dioxane | 80 | 6 | 46 | |
12 | Mn(acac)3 (1.5) | THF | 80 | 6 | 38 | |
13 | Mn(acac)3 (1.5) | DCE | 80 | 6 | 43 | |
14 | Mn(acac)3 (1.5) | EA | 80 | 6 | 58 | |
15 | Mn(acac)3 (1.5) | DMF | 80 | 6 | 32 | |
16 | Mn(acac)3 (1.5) | NMP | 80 | 6 | Trace | |
17 | Mn(acac)3 (2.0) | CH3CN | 80 | 6 | 70 | |
18 | Mn(acac)3 (3.0) | CH3CN | 80 | 6 | 81 | |
19 | Mn(acac)3 (4.0) | CH3CN | 80 | 6 | 72 | |
20 | Mn(acac)3 (3.0) | CH3CN | 80 | 6 | 74c | |
21 | Mn(acac)3 (3.0) | CH3CN | 80 | 6 | 85d | |
22 | Mn(acac)3 (3.0) | CH3CO2H (2.0) | CH3CN | 80 | 6 | 51 |
23 | Mn(acac)3 (3.0) | C4H9CO2H (2.0) | CH3CN | 80 | 6 | 56 |
24 | Mn(acac)3 (3.0) | NEt3 (2.0) | CH3CN | 80 | 6 | 61 |
25 | Mn(acac)3 (3.0) | DBU (2.0) | CH3CN | 80 | 6 | 48 |
26 | Mn(acac)3 (3.0) | — | CH3CN | 60 | 6 | 72 |
27 | Mn(acac)3 (3.0) | — | CH3CN | 100 | 6 | 66 |
28 | Mn(acac)3 (3.0) | — | CH3CN | 80 | 4 | 69 |
29 | Mn(acac)3 (3.0) | — | CH3CN | 80 | 8 | 79 |
30e | Mn(acac)3 (3.0) | — | CH3CN | 80 | 6 | 82e |
[1] |
(a) Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev. 2005, 105, 899.
doi: 10.1021/cr040672y |
(b) Shibata, M.; Ikeda, M.; Motoyama, K.; Miyake, Y.; Nishibayashi, Y. Chem. Commun. 2012, 48, 9528.
doi: 10.1039/c2cc35262a |
|
(c) Tao, X.; Li, W.; Li, X.; Xie, X.; Zhang, Z. Org. Lett. 2013, 15, 72.
doi: 10.1021/ol303105d |
|
(d) Liu, K.-J.; Ou, J.-H.; Ou, L.-J.; Liu, H.-W.; Tang, X.-D.; Li, L.-B.; Hu, B.-N. Chin. J. Org. Chem. 2015, 35, 1889. (in Chinese)
|
|
(刘开建, 欧金花, 欧丽娟, 刘宏伟, 唐新德, 李来丙, 胡波年, 有机化学, 2015, 35, 1889.)
doi: 10.6023/cjoc201502015 |
|
[2] |
(a) Perumal, S. K.; Adediran, S. A.; Pratt, R. F. Bioorg. Med. Chem. 2008, 16, 6987.
doi: 10.1016/j.bmc.2008.05.045 |
(b) Janicki, I.; Kiełbasiński, P.; Szeląg, J.; Glebski, A.; Szczesna- Antczak, M. Bioorg. Chem. 2020, 96, 103548.
doi: 10.1016/j.bioorg.2019.103548 |
|
[3] |
(a) Sampson, P.; Hammond, G. B.; Wiemer, D. F. J. Org. Chem. 1986, 51, 4342.
doi: 10.1021/jo00373a003 |
(b) Corbel, B.; Lhostis-Kervella, I.; Haelters, J. P. Synth. Commun. 2000, 30, 609.
doi: 10.1080/00397910008087362 |
|
[4] |
(a) Remy, A.; Yannick, L. Tetrahedron Lett. 1997, 38, 233.
doi: 10.1016/S0040-4039(96)02307-6 pmid: 32756671 |
(b) Yuan, Y.; Yang, J.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058.
doi: 10.1039/D1CS00150G pmid: 32756671 |
|
(c) Huang, H.-M.; Bellotti, P.; Glorius, F. Chem. Soc. Rev. 2020, 49, 6186.
doi: 10.1039/d0cs00262c pmid: 32756671 |
|
[5] |
Ke, J.; Tang, Y.; Yi, H.; Li, Y.-L.; Cheng, Y.-D.; Liu, C.; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 6604.
doi: 10.1002/anie.v54.22 |
[6] |
(a) Zhu, Y.-F.; Wei, Y.-Y. Chem. Sci. 2014, 5, 2379.
doi: 10.1039/c4sc00093e pmid: 27934364 |
(b) Zhang, W.; Wang, N.-X.; Bai, C.-B.; Wang, Y.-J.; Lan, X.-W.; Xing, Y.-L.; Li, Y.-H.; Wen, J.-L. Sci. Rep. 2015, 5, 15250.
doi: 10.1038/srep15250 pmid: 27934364 |
|
(c) Lan, X.-W.; Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen, S.-L.; Xing, Y.-L. Org. Lett. 2016, 18, 5986.
pmid: 27934364 |
|
(d) Zhu, K.-L.; Dunne, J.; Shaver, M. P.; Thomas, S. P. ACS Catal. 2017, 7, 2353.
doi: 10.1021/acscatal.6b03287 pmid: 27934364 |
|
[7] |
(a) Goliszewska, K.; Rybicka-Jasińska, K.; Szurmak, J.; Gryko, D. J. Org. Chem. 2019, 84, 15834.
doi: 10.1021/acs.joc.9b02073 pmid: 31594308 |
(b) Shang, W.-B.; Peng, F.-Y.; Feng, Q.-L. Org. Chem. Front. 2022, 9, 2680.
doi: 10.1039/D2QO00198E pmid: 31594308 |
|
[8] |
(a) Tang, Y.-C.; Fan, Y.-Y.; Gao, H.-J.; Li, X.-Q.; Xu, X.-S. Tetrahedron Lett. 2015, 56, 5616.
doi: 10.1016/j.tetlet.2015.08.055 pmid: 31309831 |
(b) Liang, X.; Xiong, M.-T.; Zhu, H.-P.; Shen, K.-X.; Pan, Y. J. Org. Chem. 2019, 84, 11210.
doi: 10.1021/acs.joc.9b01400 pmid: 31309831 |
|
(c) Bu, M.-J.; Cai, C.; Gallou, F.; Lipshutz, B. H. Green Chem. 2018, 20, 1233.
doi: 10.1039/C7GC03866F pmid: 31309831 |
|
[9] |
(a) Liwosz, T. W.; Chemler, S. R. Chem.-Eur. J. 2013, 19, 12771.
doi: 10.1002/chem.v19.38 |
(b) Pan, X.-Q.; Zou, J.-P.; Zhang, G.-L.; Zhang, W. Chem. Commun. 2010, 46, 1721.
doi: 10.1039/b925951a |
|
[10] |
(a) Wei, W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097.
doi: 10.1002/anie.v50.39 |
(b) Zhou, Y.; Zhou, M.; Chen, M.; Su, J.; Du, J.; Song, Q. RSC Adv. 2015, 5, 103977.
doi: 10.1039/C5RA23950H |
|
(c) Zhang, P.; Zhang, L.; Gao, Y.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 51, 7839.
doi: 10.1039/C5CC01904D |
|
[11] |
(a) Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.
doi: 10.1021/acs.joc.5b02887 pmid: 29136376 |
(b) Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F. J. Org. Chem. 2017, 82, 13268.
doi: 10.1021/acs.joc.7b02391 pmid: 29136376 |
|
[12] |
(a) Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
doi: 10.1126/science.aav3200 |
(b) Kong, W.; Yu, C.; An, H.; Song, Q. Org. Lett. 2018, 20, 349.
doi: 10.1021/acs.orglett.7b03587 |
|
(c) Zhao, B.; Shang, R.; Wang, G.-Z.; Wang, S.; Chen, H.; Fu, Y. ACS. Catal. 2020, 10, 1334.
doi: 10.1021/acscatal.9b04699 |
|
(d) Feng, Z.; Zhu, B.; Dong, B.; Cheng, L.; Li, Y.; Wang, Z.; Wu, J. Org. Lett. 2021, 23, 508.
doi: 10.1021/acs.orglett.0c04021 |
|
[13] |
Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F. J. Org. Chem. 2017, 82, 13268.
doi: 10.1021/acs.joc.7b02391 pmid: 29136376 |
[14] |
Liu, Y.; Li, S.-J.; Chen, X.-L.; Fan, L.-L.; Li, X.-Y.; Zhu, S.-S.; Qu, L.-B.; Yu, B. Adv. Synth. Catal. 2020, 362, 688.
doi: 10.1002/adsc.v362.3 |
[15] |
(a) Li, W.-P.; Zhu, Y.-C.; Zhou, Y.-J.; Yang, H.-W.; Zhu, C.-J. Tetrahedron 2019, 75, 1647.
doi: 10.1016/j.tet.2018.12.023 |
(b) Garg, P.; Singh, A. Asian J. Org. Chem. 2019, 8, 849.
doi: 10.1002/ajoc.v8.6 |
|
(c) Taniguchi, R.; Noto, N.; Tanaka, S.; Takahashi, K.; Oyama, R.; Abe, M.; Koike, T.; Akita, M. Chem. Commun. 2021, 57, 2609.
doi: 10.1039/D0CC08060H |
|
[16] |
(a) Gärtner, D.; Stein, A. L.; Grupe, S.; Arp, J.; von Wangelin, A. J. Angew. Chem., Int. Ed. 2015, 54, 10545.
doi: 10.1002/anie.v54.36 |
(b) Yu, J.-Y.; Shimizu, R.; Kuwano, R. Angew. Chem., Int. Ed. 2010, 49, 6396.
doi: 10.1002/anie.v49:36 |
|
(c) Song, C.-X.; Cai, G.-X.; Farrell, T. R.; Jiang, Z.-P.; Li, H.; Gan, L.-B.; Shi, Z.-J. Chem. Commun. 2009, 45, 6002.
|
|
(d) Lu, Y.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. J. Fluorine Chem. 2014, 161, 128.
doi: 10.1016/j.jfluchem.2014.01.020 |
|
(e) Geibel, I.; Dierks, A.; Müller, T., Christoffers, J. Chem. Eur. J. 2017, 23, 7245.
doi: 10.1002/chem.v23.30 |
|
[17] |
(a) Chen, X.; Chen, X.-L.; Li, X.; Qu, C.; Qu, L.-B.; Bi, W.-Z.; Sun, K.; Zhao, Y.-F. Tetrahedron 2017, 73. 2459.
|
(b) Li, L.-L.; Huang, W.-B.; Chen, L.-J.; Dong, J.-X.; Ma, X.-B.; Peng, Y.-G. Angew. Chem., Int. Ed. 2017, 56, 10539.
doi: 10.1002/anie.v56.35 |
|
(c) Yamamoto, D.; Ansai, H.; Hoshino, J.; Makino, K. Chem. Pharm. Bull. 2018, 66, 873.
doi: 10.1248/cpb.c18-00381 |
|
(d) Yi, N.-N.; Wang, R.; Zou, H.; He, W.-B.; Fu, W.-Q.; He, W.-M. J. Org. Chem. 2015, 80, 5023.
doi: 10.1021/acs.joc.5b00408 |
|
(e) Zhang, G.-Y.; Li, C.-K.; Li, D.-P.; Zeng, R.-S.; Shoberu, A.; Zou, J.-P. Tetrahedron 2016, 72, 2972.
doi: 10.1016/j.tet.2016.04.013 |
[1] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[2] | Jiantao Zhang, Cong Zhang, Nuolin Mo, Jiating Luo, Lianfen Chen, Weibing Liu. Research Progress in Radical Addition Reaction of Alkenes Involving Chloroform [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3098-3106. |
[3] | Jiamin Ma, Jiaoxiong Li, Qiansen Meng, Xianghua Zeng. Advances on the Radical Sulfonation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2040-2052. |
[4] | Wenting Wei, Zhuangzhuang Li, Wandi Li, Jiaqi Li, Xianying Shi. Green Method for Constructing Phthalides via Oxidative Coupling of Aromatic Acids and Acrylates in Neat Water and Air [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1177-1186. |
[5] | Jianming Zhao, Jiashun Zhu, Jiabin Shen, Yilan Zhang, Wanmei Li. Photocatalyzed Oxidative Cross-Coupling Reaction to Access Symmetrical/Unsymmetrical Thiosulfonates [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2940-2946. |
[6] | Yanli Yin, Xiaowei Zhao, Zhiyong Jiang. Asymmetric Photocatalytic Synthesis of Enantioenriched Azaarene Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1609-1625. |
[7] | Xin Sun, Chaofan Qu, Chaorui Ma, Xiaowei Zhao, Guobi Chai, Zhiyong Jiang. Photoredox Catalytic Cascade Radical Addition to Construct 1,4- Diketone-Functionalized Quinoxalin-2(1H)-one Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1396-1406. |
[8] | Ruikai Liu, Zheng Xu, Zhitao Ning, Zhengyin Du. Synthesis of β-Sulfonyl Enamines via Iodine-Catalyzed Reaction between Vinyl Azides and Sodium Arylsulfinates [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 200-207. |
[9] | Qisheng Gao, Qi Jing, Yang Chen, Jing Sun, Mingdong Zhou. Decarboxylative Amidation of Acrylamides with Oxamic Acids [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 257-265. |
[10] | Junfeng Qian, Xiaoting Tian, Zhong Wu, Jie Yao, Hui Wang, Weiyou Zhou. Efficient Oxidative Coupling of Isochroman with Primary Arylamines Catalyzed by Heterogeneous Ni-Containing Layered Double Oxide [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3668-3674. |
[11] | Wei Chen, Qiang Liu. Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3414-3430. |
[12] | Keying Du, Zhanming Zhang, Weijian Sheng. Copper-Catalyzed the Synthesis of 3-Trifluoromethylchromone via Trifluoromethyl Radical Addition Tandem Cyclization Reaction of 2-Hydroxyphenyl Enaminones [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3242-3248. |
[13] | Jian-Ting Sun, Ling-Yan Chen, Bang-Guo Wei. Samarium Diiodide Promoted the Addition-Ring-Opening Reaction of 2-Piperidinone with α,β-Unsaturated Esters [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4320-4326. |
[14] | Zhou Xiaoqiang, Yan Hao, Wang Qiuya. N-Iodo-succininide (NIS)/K2S2O8 Initiated Self-Coupling of Enamides to Nitrogen-Containing Quaternary Carbon Centers [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2142-2147. |
[15] | Chen Yuefeng, Zhao He, Cheng Dongping, Li Xiaonian, Xu Xiaoliang. Coupling of Hantzsch Esters with Baylis-Hillman Derivatives via Visible-Light Photoredox Catalysis [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1297-1304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||