Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1337-1342.DOI: 10.6023/cjoc202307021 Previous Articles     Next Articles

ARTICLES

基于聚集诱导效应(AIE)-激发态分子内质子转移(ESIPT)效应的四苯乙烯荧光探针对Zn(II)检测研究

张继东a,b,*(), 杨垚a, 张杰a, 厍伟a   

  1. a 安康学院化学化工学院 陕西省富硒食品质量监督检验中心 陕西安康 725000
    b 中国富硒产业研究院 农业农村部富硒产品开发与质量控制重点实验室 陕西安康 725000
  • 收稿日期:2023-07-21 修回日期:2023-10-15 发布日期:2023-11-15
  • 基金资助:
    陕西省技术创新引导专项基金(2022QFY09-09); 陕西省重点研发计划(2023YBGY-152); 陕西省教育厅专项科研计划项目(23JK0274); 安康学院科研项目重点项目(2021AYZD03); 国家级大学生创新创业训练计划(202211397014); 陕西省大学生创新创业训练计划(S202211397031)

Detection of Zn(II) by Tetraphenylethyene Fluorescent Probe Based on Aggregation-Induced Emission (AIE)-Excited State Intramolecular Proton Transfer (ESIPT) Effect

Jidong Zhanga,b(), Yao Yanga, Jie Zhanga, Wei Shea   

  1. a Quality Supervision and Inspection Centre of Se-Enriched Food of Shaanxi Province, School of Chemistry & Chemical Engineering, Ankang University, Ankang, Shaanxi 725000
    b Key Laboratory of Se-Enriched Products Development and Quality Control of Ministry of Agriculture, Se-Enriched Products Research Institute of China, Ankang, Shaanxi 725000
  • Received:2023-07-21 Revised:2023-10-15 Published:2023-11-15
  • Contact: E-mail: akuzjd@aku.edu.cn
  • Supported by:
    Shaanxi Provincial Technology Innovation Guidance Special Fund(2022QFY09-09); Shaanxi Provincial Key Research Program(2023YBGY-152); Shaanxi Provincial Education Department Special Scientific Research Project(23JK0274); Key Natural Science Research Project of Ankang University(2021AYZD03); National Undergraduate Training Program for Innovation and Entrepreneurship(202211397014); Shaanxi Provincial Innovation Experiment Program for University Students(S202211397031)

A aggregation induced effect (AIE) Zn2+ fluorescence probe with tetrastyrene as the fluorescent group and orthovanillin as the recognition group was designed and synthesized. The structure of the probe was characterized by 1H NMR, MS and single-crystal X ray diffraction. The fluorescence spectra showed that the probe has good selectivity and sensitivity to Zn2+, and its fluorescence enhances with the increase of concentration of Zn2+. Through job plot and single crystal structure characterization, it was found that the probe has a 2∶1 binding mode with Zn2+, and the detection limit is 56.2 nmol•L–1. The detection mechanism was attributed to the excited state intramolecular proton transfer (ESIPT) and AIE effect. The new AIE probe can be used as a convenient tool for the analysis and determination of Zn2+.

Key words: tetraphenylethyene, aggregation-induced emission (AIE), fluorescent probe, zinc complex