化学学报 ›› 2011, Vol. 69 ›› Issue (10): 1179-1185. 上一篇    下一篇

研究论文

碳纳米管表面修饰程度对其载Pd纳米粒子的电催化氧化水合肼性能的影响

赵佳越, 周益明, 吴云胜, 唐亚文, 陈煜, 陆天虹   

  1. (江苏省新型动力电源重点实验室 南京师范大学化学与材料科学学院 南京 210046)
  • 投稿日期:2010-09-16 修回日期:2011-01-06 发布日期:2011-01-26
  • 通讯作者: 陈煜 E-mail:ndchenyu@yahoo.cn
  • 基金资助:

    直接甲酸燃料电池碳载Pd阳极催化剂稳定性研究;直接甲酸燃料电池中能降低Pd催化剂催化甲酸分解速率又能提高其对甲酸氧化的电催化稳定性的方法及机理研究

Effect of Modification Extent of Carbon Nanotubes on Electrocatalytic Performance of Pd Nanoparticles for Hydrazine Oxidation

ZHAO Jia-Yue, ZHOU Yi-Ming, WU Yun-Sheng, TANG Ya-Wen, CHEN Yu, LU Tian-Hong   

  1. (Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046)
  • Received:2010-09-16 Revised:2011-01-06 Published:2011-01-26

比较了未氧化处理与经浓硝酸或混酸(浓硫酸与浓硝酸体积比为1∶1)处理后的不同多壁碳纳米管(MWNTs)为载体的Pd催化剂(Pd/MWNTs)对水合肼氧化的电催化性能. 光谱表征和电化学测试结果表明, MWNTs表面不修饰或修饰程度过大都不利于金属Pd纳米粒子的沉积. 浓硝酸处理使MWNTs表面修饰的含氧基团适中, 能够促进负载的Pd纳米粒子均一分布, 因此提高Pd/MWNTs催化剂对水合肼的电催化性能. 相反, 混酸处理使MWNTs表面产生的含氧基团过多, 导致金属Pd纳米粒子部分聚集, 从而降低Pd/MWNTs催化剂对水合肼的电催化性能.

关键词: 碳纳米管, Pd纳米粒子, 水合肼, 电催化氧化, 燃料电池

Purified multi-walled carbon nanotubes (MWNTs) were treated with concentrated HNO3 or mixed acid [V(HNO3)∶V(H2SO4)=1∶1], respectively. When MWNTs were treated in concentrated HNO3 solution, suitable amount of hydrophilic O-containing surface groups would be formed. So the average size of the Pd nanoparticles deposited on the surface of the pretreated MWNTs is small and uniform, leading to the good electrocatalytic performance of the resulting Pd/MWNTs catalyst for the hydrazine electrooxidation. If purified MWNTs were untreated, the pristine surface of MWNTs prevented deposition of Pd nanoparticles on the surface of MWNTs, which lead to the aggregation of Pd nanoparticles. When MWNTs were treated in mix acid solution, the amount of the hydrophilic O-containing surface groups formed on MWNTs was abundant, which also resulted in the agglomeration of Pd nanoparticles. Consequently, the resulting Pd/MWNTs catalysts displayed the low electrocatalytic performance for the hydrazine electrooxidation.

Key words: carbon nanotube, Pd nanoparticle, hydrazine, electrocatalytic oxidation, fuel cell