有机化学 ›› 2020, Vol. 40 ›› Issue (6): 1423-1436.DOI: 10.6023/cjoc202002035 上一篇 下一篇
综述与进展
代洪雪, 吴芬, 白大昌
收稿日期:
2020-02-25
修回日期:
2020-04-03
发布日期:
2020-04-13
通讯作者:
白大昌
E-mail:baidachang@htu.edu.cn
基金资助:
Dai Hongxue, Wu Fen, Bai Dachang
Received:
2020-02-25
Revised:
2020-04-03
Published:
2020-04-13
Supported by:
文章分享
过渡金属催化C-C键活化是有机化学一个热点和难点领域,吸引着人们广泛的关注.C-C键活化可以为很多复杂分子的合成提供简单、快速和原子经济性的方法.相比于钯、铑和铱等过渡金属催化剂,镍催化剂有很多优点,更加经济适用,也表现出独特的催化活性,备受化学家们的青睐.主要介绍了近些年镍催化C-C键断裂反应的研究进展.
代洪雪, 吴芬, 白大昌. 镍催化C—C键活化反应研究进展[J]. 有机化学, 2020, 40(6): 1423-1436.
Dai Hongxue, Wu Fen, Bai Dachang. Recent Advances in Ni-Catalyzed C—C Bond Activation Reactions[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1423-1436.
[1] Reviews:(a) Song, F.-J.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Chem. Soc. Rev. 2018, 47, 7078. (b) Deng, L.; Jin, L.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 2702. (c) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404. (d) Chen, P.-H.; Billett, B. A.; Tsukamoto, T.; Dong, G.-B. ACS Catal. 2017, 7, 1340. (e) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (f) Liu, H.; Feng, M.-H.; Jiang, X.-F. Chem.-Asian J. 2014, 9, 3360. (g) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (h) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640. (i) Liu, J.-Z.; Qiu, X.; Huang, X.-Q.; Luo, X.; Zhang, C.; Wei, J.-L.; Pan, J.; Liang, Y.-J.; Zhu, Y.-C.; Qin, Q.-X.; Son, S.; Jiao, N. Nat. Chem. 2019, 11, 94. (j) Sivaguru, P.; Wang, Z.-K.; Zanoni, G.; Bi, X.-H. Chem. Soc. Rev. 2019, 48, 2615. (k) Wu, X.-X.; Zhu, C. Chem. Rec. 2018, 18, 587. [2] (a) Murakami, M.; Ishida, N. J. Am. Chem. Soc. 2016, 138, 13759. (b) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414. (c) Li, T.-F.; Xu, F.; Li, X.-C.; Wang, C.-X.; Wan, B.-S. Angew. Chem., Int. Ed. 2016, 55, 2861. (d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (e) Chen, W.-L.; Wu, S.-Y.; Mo, X.-L.; Wei, L.-X.; Liang, C.; Mo, D.-L. Org. Lett. 2018, 20, 3527. (f) Zhao, H.-P; Liang, G.-C.; Nie, S.-M.; Lu, X.; Pan, C.-X.; Zhong, X.-X.; Su, G.-F.; Mo, D.-L. Green Chem. 2020, 22, 404. [3] (a) Dai, P.-F.; Ning, X.-S.; Wang, H.; Cui, X.-C.; Liu, J.; Qu, J.-P.; Kang, Y.-B. Angew. Chem., Int. Ed. 2019, 58, 5392. (b) Sun, T.-W.; Zhang, Y.-N.; Qiu, B.; Wang, Y.-F.; Qin, Y.-T.; Dong, G.-B.; Xu, T. Angew. Chem., Int. Ed. 2018, 57, 2859. (c) Cao, J.; Fang, R.; Liu, J.-Y.; Lu, H.; Luo, Y.-C.; Xu, P.-F. Chem.-Eur. J. 2018, 24, 18863. (d) Liu, L.-T.; Guo, Z.-H.; Xu, K.; Hui, S.-S.; Zhao, X.-F.; Zhao, B.-L.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z.-Z. Chin. J Chem. 2018, 36, 995. (e) Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738. (f) Mao, W.-B.; Zhu, C. J. Org. Chem. 2017, 82, 9133. [4] Selected examples on nickel catalyzed C-C cleavage:(a) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889. (b) Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586. (c) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2017, 139, 1416. (d) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348. (e) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 67880. (f) Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350. (g) Jiang, L.-H.; Huang, F.; Wang, Q.; Sun, C.-Z.; Liu, J.-B.; Chen, D.-Z. Org. Chem. Front. 2018, 5, 2332. [5] (a) Wiberg, K.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112, 2194. (b) Yu, S. J.; Noble, A.; Bedford, R. B.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 20325. [6] (a) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. Rev. 2003, 103, 1295. (b) Yang, Y.; Zhang, Z.; Zhang, X.; Wang, D.; Wei, Y.; Shi, M. Chem. Commun. 2014, 50, 115. (c) Li, X.; Han, C.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 778. [7] Noyori, R.;Umeda, I.; Takaya H. Chem. Lett. 1972, 1, 1189. [8] (a) Baba, A.; Ohshiro, Y.; Agawa, T. Chem. Lett. 1976, 5, 11. (b) Baba, A.; Ohshiro, Y.; Agawa. T. J. Organomet. Chem. 1976, 110, 121. [9] Zhao, W.-T.; Gao, F.; Zhao, D.-B. Angew. Chem., Int. Ed. 2018, 57, 6329. [10] Huang, J. Q.; Ho, C. Y. Angew. Chem., Int. Ed. 2019, 58, 5702. [11] (a) Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92, 5780. (b) Noyori, R.; Kumagai, Y.; Umeda, I.; Takaya, H. J. Am. Chem. Soc. 1972, 94, 4018. (c) Ma, X.-P.; Nong, C.-M.; Zhao, J.; Lu, X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2020, 362, 478. [12] (a) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540. (b) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114. (c) Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. 2006, 45, 2446. (d) Maeda, K.; Saito, S. Tetrahedron Lett. 2007, 48, 3173. (e) Saito, S.; Takeuchi, K. Tetrahedron Lett. 2007, 48, 595. [13] Saito, S.; Maeda, K.; Yamasaki, R.; Kitamura, T.; Nakagawa, M.; Kato, K.; Azumaya, I.; Masu, H. Angew. Chem., Int. Ed. 2010, 49, 1830. [14] Saito, S.; Yoshizawa, T.; Ishigami, S.; Yamasaki, R. Tetrahedron Lett. 2010, 51, 6028. [15] (a) Saya, L.; Bhargava, G.; Navarro, M. A.; Gulías, M.; López, F.; Fernández, I.; Castedo, L.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2010, 49, 9886. (b) Saya, L.; Fernández, I.; López, F.; Mascareñas, J. L. Org. Lett. 2014, 16, 5008. [16] Yao, B.; Li, Y.; Liang, Z.; Zhang, Y. Org. Lett. 2011, 13, 640. [17] (a) Ogata, K.; Shimada, D.; Furuya, S.; Fukuzawa, S.-I. Org. Lett. 2013, 15, 1182. (b) Ogata, K.; Atsuumi, Y.; Fukuzawa, S.-I. Org. Lett. 2010, 12, 4536. (c) Pan, B.; Wang, C.; Wang, D.; Wu, F.; Wan, B. Chem. Commun. 2013, 49, 5073. [18] (a) Yamamoto, K.; Ishida, T.; Tsuji, J. Chem. Lett. 1987, 16, 1157. (b) Wang, Q.; Wang, C.; Shi, W.; Xiao, Y.; Guo, H. Org. Biomol. Chem. 2018, 16, 4881. (c) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541. (d) Liu, C.-H.; Yu, Z.-X. Angew. Chem., Int. Ed. 2017, 56, 8667. (e) Wang, Y.-Y.; Wang, J.-H.; Su, J.-C.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.-Z.; Zhang, S.-W.; Wender, P.-A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060. [19] (a) Sumida, Y.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 4677. (b) Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573. [20] (a) Tombe, R.; Iwamoto, T.; Kurahashi, T.; Matsubara, S. Synlett. 2014, 25, 2281. (b) Mori, T.; Nakamura, T.; Kimura, M. Org. Lett. 2011, 13, 2266. (c) Mita, T.; Tanaka, H.; Higuchi, Y.; Sato, Y. Org. Lett. 2016, 18, 2754. (d) Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791. [21] Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350. [22] (a) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348. (b) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 6788. (c) Liu, L.; Montgomery, J. Org. Lett. 2007, 9, 3885. (d) Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067. [23] (a) Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277. (b) Nečas, D.; Kotora, M. Org. Lett. 2008, 10, 5261. (c) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720. [24] Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. J. Organomet. Chem. 1990, 382, 191. [25] (a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4660. (b) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4040. (c) Müller, C.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 1975. (d) Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024. (e) Schaub, T.; Backes, M.; Radius, U. Organometallics 2006, 25, 4196. (f) Iverson, C. N.; Jones, W. D. Organometallics 2001, 20, 5745. [26] Ho, K. Y. T.; Aïssa, C. Chem.-Eur. J. 2012, 18, 3486. [27] (a) Kumar, P.; Zhang, K.; Louie, J. Angew. Chem., Int. Ed. 2012, 51, 8602. (b) Thakur, A.; Facer, M. E.; Louie, J. Angew. Chem., Int. Ed. 2013, 52, 12161. [28] (a) Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 9537. (b) Yang, S.; Xu, Y.; Li, J. Org. Lett. 2016, 18, 6244. [29] Auvinet, A.-L.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2011, 50, 2769. [30] (a) Boivin, J.; Fouquet, E.; Zard, S. Z. J. Am. Chem. Soc. 1991, 113, 1055. (b) Gu, Y.-R.; Duan, X.-H.; Yang, L.; Guo, L.-N. Org. Lett. 2017, 19, 5908. (c) Tang, Y.-Q.; Yang, J.-C.; Wang, L.; Fan, M.-J.; Guo, L.-N. Org. Lett. 2019, 21, 5178. (d) Yang, H.-B.; Pathipati, S.-R.; Selander, N. ACS Catal. 2017, 7, 8441. (e) Shuai, B.; Li, Z.-M.; Qiu, H.; Fang, P.; Mei, T.-S. Chin. J. Org. Chem. 2020, 40, 651(in Chinese). (帅斌, 李兆明, 裘晖, 方萍, 梅天胜, 有机化学, 2020, 40, 651.) (f) Ding, D.-C.; Wang, C. ACS Catal. 2018, 8, 11324. (g) Ding, D.-C.; Lan, Y.; Lin, Z.-Y.; Wang, C. Org. Lett. 2019, 21, 2723. [31] Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543. [32] Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904. [33] (a) Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567. (b) Ohnishi, Y.-Y.; Nakao, Y.; Sato, H.; Nakao, Y.; Hiyama, T.; Sakaki, S. Organometallics 2009, 28, 2583. (c) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964. (d) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428. (e) Yada, A.; Yukawa, T.; Nakao, Y.; Hiyama, T. Chem. Commun. 2009, 3931. (f) Yada, A.; Yukawa, T.; Idei, H.; Nakao, Y.; Hiyama, T. Bull. Chem. Soc. Jpn. 2010, 83, 619. (g) Nakao, Y.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 10024. (h) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385. (i) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037. (j) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (k) Minami, Y.; Yoshiyasu, H.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2013, 52, 883. (l) Nakai, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 856. [34] (a) Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385. (b) Hirata, Y.; Tanaka, M.; Yada, A.; Nakao, Y.; Hiyama, T. Tetrahedron 2009, 65, 5037. (c) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070. (d) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624. (e) Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7420. (f) Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624. [35] (a) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374. (b) Sun, M.; Zhang, H.-Y.; Han, Q.; Yang, K.; Yang, S.-D. Chem.-Eur. J. 2011, 17, 9566. [36] Zhang, J.-S.; Chen, T.-Q.; Zhou, Y.-B.; Yin, S.-F.; Han, L.-B. Org. Lett. 2018, 20, 6746. [37] Chen, H.; Sun, S.-H.; Liu, Y.-H.; Liao, X.-B. ACS Catal. 2020, 10, 1397. [38] Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani, O. J. Am. Chem. Soc. 2017, 139, 1416. [39] Zhao, T.-T.; Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. J. Am. Chem. Soc. 2018, 140, 586. [40] Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 7, 2889. [41] Jiang, C.; Lu, H.; Xu, W.-H.; Wu, J.-N.; Yu, T.-Y.; Xu, P.-F.; Wei, H. ACS Catal. 2020, 10, 1947. [42] Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791. [43] (a) Liu, Q.-S.; Wang, D.-Y.; Yang, Z.-J.; Luan, Y.-X.; Yang, J.-F.; Li, J.-F.; Pu, Y.-G.; Ye, M.-C. J. Am. Chem. Soc. 2017, 139, 18150. (b) Wang, Y.-X.; Ye, M.-C. Sci. China, Chem. 2018, 61, 1004. [44] Bai, D.-C.; Yu, Y.-J.; Guo, H.-M.; Chang, J.-B.; Li, X.-W. Angew. Chem., Int. Ed. 2020, 59, 2740. [45] (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485. (b) Zhou, X.; Dong, G.-B. Angew. Chem., Int. Ed. 2016, 55, 15091. (c) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932. [46] (a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594. (b) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (c) Hsieh, J.-C.; Ebata, S.; Nakao, Y.; Hiyama, T. Synlett 2010, 1709. |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[3] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[4] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[5] | 王文芳. 过渡金属催化不对称C—H硼化反应研究进展[J]. 有机化学, 2023, 43(9): 3146-3166. |
[6] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[7] | 石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505. |
[8] | 董思凡, 李昊龙, 秦源, 范士明, 刘守信. 氨基酸作为瞬态导向基在碳氢键活化反应中的研究进展[J]. 有机化学, 2023, 43(7): 2351-2367. |
[9] | 徐忠荣, 万结平, 刘云云. 基于热、光以及电化学过程的无过渡金属碳-氢键硫氰化和硒氰化反应[J]. 有机化学, 2023, 43(7): 2425-2446. |
[10] | 褚杨杨, 韩召斌, 丁奎岭. 动力学拆分在过渡金属催化的不对称(转移)氢化中的应用研究[J]. 有机化学, 2023, 43(6): 1934-1951. |
[11] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[12] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[13] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
[14] | 芦军, 李奇闯, 梁仁校, 贾义霞. 镍催化吡啶/喹啉鎓盐分子内去芳构化芳基加成反应[J]. 有机化学, 2023, 43(5): 1875-1882. |
[15] | 景科, 张攀科, 徐森苗. 1,4-氮硼杂芳环在有机和过渡金属催化中的应用[J]. 有机化学, 2023, 43(5): 1742-1750. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||