有机化学 ›› 2022, Vol. 42 ›› Issue (1): 172-180.DOI: 10.6023/cjoc202107038 上一篇 下一篇
研究论文
张文杰a, 李超a, 王博超a, 高慧a,b,*(), 李洪基a,*()
收稿日期:
2021-07-18
修回日期:
2021-09-16
发布日期:
2021-09-26
通讯作者:
高慧, 李洪基
基金资助:
Wenjie Zhanga, Chao Lia, Bochao Wanga, Hui Gaoa,b(), Hongji Lia()
Received:
2021-07-18
Revised:
2021-09-16
Published:
2021-09-26
Contact:
Hui Gao, Hongji Li
Supported by:
文章分享
报道了利用导向基策略实现Rh(III)催化芳基偶氮苯与碳酸亚乙烯基酯的环化反应. 该反应体系可以一步构建吲唑类化合物骨架. 值得指出的是碳酸亚乙烯基酯中的一个碳原子参与吲唑环的构建, 另一个碳原子用于醛的生成. 该反应能够高效合成一系列吲唑衍生物, 产物收率中等到良好.
张文杰, 李超, 王博超, 高慧, 李洪基. Rh(III)催化偶氮苯与碳酸亚乙烯基酯的环化反应[J]. 有机化学, 2022, 42(1): 172-180.
Wenjie Zhang, Chao Li, Bochao Wang, Hui Gao, Hongji Li. Rh(III)-Catalyzed Annulation of Azobenzenes with Vinylene Carbonate[J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 172-180.
Entry | Catalyst | Additive | Yieldb/% |
---|---|---|---|
1 | [Cp*RhCl2]2 | — | n.r. |
2 | [Cp*RhCl2]2 | AgSbF6 | 60 |
3 | [Cp*RhCl2]2 | AgTFA | 40 |
4 | [Cp*RhCl2]2 | AgOAc | 72 |
5 | [Cp*Rh(MeCN)3](SbF6)2 | AgOAc | 67 |
6 | [Cp*CoCl2]2 | AgOAc | n.r. |
7 | [Cp*IrCl2]2 | AgOAc | n.r. |
8 | [Cp*RhCl2]2 | AgOAc | 66c |
9 | [Cp*RhCl2]2 | AgOAc | 71d |
10 | [Cp*RhCl2]2 | AgOAc | 68e |
11 | [Cp*RhCl2]2 | AgOAc | 53f |
12 | [Cp*RhCl2]2 | AgOAc | 56g |
13 | [Cp*RhCl2]2 | AgOAc | 62h |
Entry | Catalyst | Additive | Yieldb/% |
---|---|---|---|
1 | [Cp*RhCl2]2 | — | n.r. |
2 | [Cp*RhCl2]2 | AgSbF6 | 60 |
3 | [Cp*RhCl2]2 | AgTFA | 40 |
4 | [Cp*RhCl2]2 | AgOAc | 72 |
5 | [Cp*Rh(MeCN)3](SbF6)2 | AgOAc | 67 |
6 | [Cp*CoCl2]2 | AgOAc | n.r. |
7 | [Cp*IrCl2]2 | AgOAc | n.r. |
8 | [Cp*RhCl2]2 | AgOAc | 66c |
9 | [Cp*RhCl2]2 | AgOAc | 71d |
10 | [Cp*RhCl2]2 | AgOAc | 68e |
11 | [Cp*RhCl2]2 | AgOAc | 53f |
12 | [Cp*RhCl2]2 | AgOAc | 56g |
13 | [Cp*RhCl2]2 | AgOAc | 62h |
[1] |
(a) Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. ChemMed- Chem 2018, 13, 1490.
|
(b) Ghosh, S.; Mondal, S.; Hajra, A. Adv. Synth. Catal. 2020, 21, 37684.
|
|
[2] |
(a) Angelis, M. D.; Stossi, F.; Carlson, K. A.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2005, 48, 1132.
pmid: 15715479 |
(b) Aman, W.; Lee, J.; Kim, M.; Yang, S.; Jung, H.; Hah, J.-M. Bioorg. Med. Chem. Lett. 2016, 26, 1188.
doi: 10.1016/j.bmcl.2016.01.037 pmid: 15715479 |
|
[3] |
(a) Yong, W.-S.; Park, S.; Yun, H.; Lee, P. H. Adv. Synth. Catal. 2016, 358, 1958.
doi: 10.1002/adsc.v358.12 pmid: 30985985 |
(b) Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Org. Lett. 2010, 12, 2234.
doi: 10.1021/ol100586r pmid: 30985985 |
|
(c) Vidyacharan, S.; Ramanjaneyulu, B. T.; Jang, S.; Kim, D.-P. ChemSusChem 2019, 12, 2581.
doi: 10.1002/cssc.201900736 pmid: 30985985 |
|
(d) Kumar, M. R.; Park, A.; Park, N.; Lee, S. W. Org. Lett. 2011, 13, 3542.
doi: 10.1021/ol201409j pmid: 30985985 |
|
(e) Wang, C.-D.; Liu, R.-S. Org. Biomol. Chem. 2012, 10, 8948.
doi: 10.1039/c2ob26760h pmid: 30985985 |
|
(f) Geng, X.; Wang, C. Org. Lett. 2015, 17, 2434.
doi: 10.1021/acs.orglett.5b00938 pmid: 30985985 |
|
(g) Long, Z.; Wang, Z.; Zhou, D.; Wan, D.; You, J. Org. Lett. 2017, 19, 2777.
doi: 10.1021/acs.orglett.7b00631 pmid: 30985985 |
|
(h) Li, X.; Ye, X.; Wei, C.; Shan, C.; Wojtas, L.; Wang, Q.; Shi, X. Org. Lett. 2020, 22, 4151.
doi: 10.1021/acs.orglett.0c01232 pmid: 30985985 |
|
[4] |
(a) Li, H.; Li, P.; Wang, L. Org. Lett. 2013, 15, 620.
doi: 10.1021/ol303434n |
(b) Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 7122.
doi: 10.1021/ja402761p |
|
(c) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490.
doi: 10.1021/ja5116452 |
|
(d) Chen, X.; Wang, Y.; Wang, S.; Kong, D.; Wen, L.; Zhai, R.; Zhao, K.; Bai, L.; Li, Y. Chin. J. Org. Chem. 2020, 40, 688. (in Chinese)
doi: 10.6023/cjoc201909021 |
|
(陈训, 王颖, 王烁今, 孔杜林, 文丽君, 翟锐锐, 赵珂, 白丽丽, 李友宾, 有机化学, 2020, 40, 688.)
doi: 10.6023/cjoc201909021 |
|
[5] |
(a) Zhao, D.; Vάsquez-Céspedes, S.; Glorius, F. Angew. Chem., nt. Ed. 2015, 54, 1657.
|
(b) Wang, L.; Shao, Y.; Chen, F.; Qian, P.-C.; Cheng, J. Chin. J. Org. Chem. 2021, doi: 10.6023/cjoc202106023.
doi: 10.6023/cjoc202106023 |
|
[6] |
(a) Jeong, T.; Han, S. H.; Han, S.; Sharma, S.; Park, J.; Lee, J. S.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Org. Lett. 2016, 18, 232.
doi: 10.1021/acs.orglett.5b03368 |
(b) Long, Z.; Yang, Y.; You, J. Org. Lett. 2017, 19, 2781.
doi: 10.1021/acs.orglett.7b00982 |
|
(c) Cai, S.; Lin, S.; Yi, X.; Xi, C. J. Org. Chem. 2017, 82, 512.
doi: 10.1021/acs.joc.6b02548 |
|
(d) Wang, N.; Liu, L.; Xu, W.; Zhang, M.; Huang, Z.; Shi, D.; Zhao, Y. Org. Lett. 2019, 21, 365.
doi: 10.1021/acs.orglett.8b03488 |
|
(e) Jiang, C.; Chen, S.; Gong, J.; Yang, Z. Acta Chim. Sinica 2020, 78, 928. (in Chinese)
doi: 10.6023/A20060198 |
|
(江崇国, 陈斯嘉, 龚建贤, 杨震, 化学学报, 2020, 78, 928.)
doi: 10.6023/A20060198 |
|
[7] |
(a) Hilf, S.; Grubbs, R. H.; Kilbinger, A. F. M. J. Am. Chem. Soc. 2008, 130, 11040.
doi: 10.1021/ja8022863 |
(b) Kim, K. H.; Park, B. R.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2011, 52, 3463.
doi: 10.1016/j.tetlet.2011.04.108 |
|
(c) Wang, Z.; Xue, F.; Hayashi, T. Angew. Chem., nt. Ed. 2019, 58, 11054.
|
|
[8] |
Hara, H.; Hirano, M.; Tanaka, K. Org. Lett. 2009, 11, 1337.
doi: 10.1021/ol900123d |
[9] |
(a) Ghosh, K.; Nishii, Y.; Miura, M. ACS Catal. 2019, 9, 11455.
doi: 10.1021/acscatal.9b04254 pmid: 32638595 |
(b) Li, X.; Huang, T.; Song, Y.; Qi, Y.; Li, L.; Li, Y.; Xiao, Q.; Zhang, Y. Org. Lett. 2020, 22, 5925.
doi: 10.1021/acs.orglett.0c02016 pmid: 32638595 |
|
(c) Wang, Z.-H.; Wang, H. Li, L.; Zhou, M.-D. Org. Lett. 2021, 23, 995.
doi: 10.1021/acs.orglett.0c04200 pmid: 32638595 |
|
(d) Ghosh, K.; Nishii, Y.; Miura, M. Org. Lett. 2020, 22, 3547.
doi: 10.1021/acs.orglett.0c00975 pmid: 32638595 |
|
(e) Mihara, G.; Ghosh, K.; Nishii, Y.; Miura, M. Org. Lett. 2020, 22, 5706.
doi: 10.1021/acs.orglett.0c02112 pmid: 32638595 |
|
[10] |
(a) Nan, J.; Ma, Q.; Yin, J.; Liang, C.; Tian, L.; Ma, Y. Org. Chem. Front. 2021, 8, 1764.
doi: 10.1039/D1QO00040C |
(b) Wang, C.; Fan, X.; Chen, F.; Qian, P.-C.; Cheng, J. Chem. Commun. 2021, 57, 3929.
doi: 10.1039/D1CC00882J |
|
[11] |
(a) Li, H.; Li, P.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 9170.
doi: 10.1039/c3cc45492d |
(b) Li, H.; Li, P.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
doi: 10.1002/chem.v19.43 |
|
(c) Li, H.; Xie, X.; Wang, L. Chem. Commun., 2014, 50, 4218.
doi: 10.1039/C4CC00449C |
|
(d) Deng, H.; Li, H.; Wang, L. Org. Lett. 2015, 17, 2450.
doi: 10.1021/acs.orglett.5b00957 |
|
(e) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., nt. Ed., 2015, 54, 8374.
|
|
(f) Yang, W.; Li, P.; Wang, L. Chem. Commun., 2015, 51, 7520.
doi: 10.1039/C5CC00878F |
|
(g) Deng, H.; Li, H.; Wang, L. Org. Lett. 2016, 18, 3110.
doi: 10.1021/acs.orglett.6b01277 |
|
(h) Zhang, W.; Deng, H.; Li, H. Org. Chem. Front., 2017, 4, 2202.
doi: 10.1039/C7QO00542C |
|
(i) Zhang, W.; Bu, J.; Wang, L.; Li, P.; Li, H. Org. Chem. Front. 2021, 8, 5054.
|
|
[12] |
Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M.; Köhler, F.; Herges, R. J. Org. Chem. 2004, 69, 6979.
pmid: 15471442 |
[13] |
During our preparation of this manuscript, Kim’s group reported a Rh(III)-catalyzed [4+1]/[4+2] annulation of azobenzenes with vinyl carbonate in DCE, which affords a series of indazoles and dihydrocinnolinones in good yields. In this work, only the azobenzene bearing electro-donating groups can produce the 2H-indozale bearing a hydro methyl group. However, our manuscript first discloses an aldehyde formed from the vinyl carbonate, in which TFE plays a critical role for this chemical event. Particularly, the aldehyde can be easily transformed into other useful compounds. Therefore, a slightly different mechanism for this annulation was proposed herein. For the work reported by Kim, see: Park, M. S.; Moon, K.; Oh, H.; Lee, J. Y.; Ghosh, P.; Kang, J. Y.; Park, J. S.; Mishra, N. K.; Kim, I. S. Org. Lett. 2021, 23, 5081.
doi: 10.1021/acs.orglett.1c01609 |
[14] |
(a) Zhang, C.; Jiao, N. Angew. Chem., nt. Ed. 2010, 49, 6174.
|
(b) Wang, Z.-C.; Yin, Z.-P.; Zhu, F.-X.; Li, Y.-H.; Wu, X.-F. ChemCatChem 2017, 9, 3637.
doi: 10.1002/cctc.201700679 |
|
[15] |
Delmas, M.; Bigot, Y. L.; Gaset, A.; Gorrichon, J. P. Synth. Commun. 1981, 11, 125.
doi: 10.1080/00397918108064292 |
[16] |
Ranjbar-Karimi, R.; Beiki-Shoraki, K.; Amiri, A. Monatsh. Chem. 2010, 141, 1101.
doi: 10.1007/s00706-010-0371-8 |
[17] |
Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M.; Köhler, F.; Herges, R. J. Org. Chem. 2004, 69, 6979.
pmid: 15471442 |
[18] |
(a) Guo, S.; Sun, L.; Li, X.; Zhang, X.; Fan, X. Adv. Synth. Catal. 2020, 362, 913.
doi: 10.1002/adsc.v362.4 |
(b) Bhattacharjee, S.; Laru, S.; Ghosh, P.; Hajra, A. J. Org. Chem. 2021, 86, 10866.
doi: 10.1021/acs.joc.1c01188 |
|
[19] |
Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Org. Lett. 2010, 12, 2234.
doi: 10.1021/ol100586r |
[1] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[2] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[3] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[4] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[5] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[6] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[7] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[8] | 南宁, 吴双, 秦景灏, 李金恒. 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023, 43(10): 3414-3453. |
[9] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[10] | 桑田, 贾帆, 何静, 李春天, 刘岩, 刘平. I2催化β-酮腈与1H-吡唑-5-胺的环化反应[J]. 有机化学, 2023, 43(1): 195-201. |
[11] | 刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝. 构建2H-吡咯-2-酮骨架的研究进展[J]. 有机化学, 2023, 43(1): 57-73. |
[12] | 王川川, 马志伟, 侯学会, 杨龙华, 陈亚静. N-Ts氰胺在有机合成中的研究与应用[J]. 有机化学, 2023, 43(1): 74-93. |
[13] | 刘浩阳, 孙爽爽, 马献力, 陈艳艳, 徐燕丽. 可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物[J]. 有机化学, 2022, 42(9): 2867-2876. |
[14] | 王苛莉, 黄静, 刘伟, 伍智林, 于贤勇, 蒋俊, 何卫民. 由N-(2-丙炔基)苯胺和磺酰氯直接合成3-砜基喹啉[J]. 有机化学, 2022, 42(8): 2527-2534. |
[15] | 张智鑫, 翟彤仪, 朱伯汉, 钱鹏程, 叶龙武. 无金属催化炔酰胺分子内[4+2]环化反应合成四氢吲哚衍生物[J]. 有机化学, 2022, 42(5): 1501-1508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||