有机化学 ›› 2022, Vol. 42 ›› Issue (8): 2488-2495.DOI: 10.6023/cjoc202204005 上一篇 下一篇
研究论文
收稿日期:
2022-04-03
修回日期:
2022-05-02
发布日期:
2022-05-17
通讯作者:
刘庆安, 宣俊
作者简介:
基金资助:
Xuyu Zhou, Aijun Zhang, Qingqing Zhang, Qing'an Liu(), Jun Xuan()
Received:
2022-04-03
Revised:
2022-05-02
Published:
2022-05-17
Contact:
Qing'an Liu, Jun Xuan
About author:
Supported by:
文章分享
报道了在可见光照射下, 通过醋酸碘苯(PIDA)促进的α-酮酸与邻-烯丙氧基芳醛的自由基串联环化反应, 高效构建了含有1,4-二酮片段的4-色满酮衍生物. 该反应在温和的条件下即可进行, 如室温、蓝色LED灯照射、无需光氧化还原催化剂等. 在最优的反应条件下, 可以中等到好的产率得到目标杂环化合物.
周旭煜, 张爱君, 张庆庆, 刘庆安, 宣俊. 可见光诱导4-色满酮合成: 醋酸碘苯促进的α-酮酸与邻-烯丙氧基芳醛的自由基串联环化反应[J]. 有机化学, 2022, 42(8): 2488-2495.
Xuyu Zhou, Aijun Zhang, Qingqing Zhang, Qing'an Liu, Jun Xuan. Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of α-Oxocarboxylic Acids with o-(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2488-2495.
Entry | Deviation from standard conditions | Yieldb/% |
---|---|---|
1 | None | 26 |
2 | DCE instead of CH3CN | 21 |
3 | EtOAc instead of CH3CN | 25 |
4 | THF instead of CH3CN | 12 |
5 | Toluene instead of CH3CN | 9 |
6 | DMF instead of CH3CN | Trace |
7 | DMSO instead of CH3CN | Trace |
8 | MeOH instead of CH3CN | 0 |
9 | H2O instead of CH3CN | 0 |
10 | 1a:2a=1:4, 12 h | 62 |
11 | 1a:2a=1:4, 24 h | 61 |
12c | 1a:2a=1:4, 12 h | Trace |
13 | Without PIDA | 0 |
14 | Without blue LEDs | 0 |
Entry | Deviation from standard conditions | Yieldb/% |
---|---|---|
1 | None | 26 |
2 | DCE instead of CH3CN | 21 |
3 | EtOAc instead of CH3CN | 25 |
4 | THF instead of CH3CN | 12 |
5 | Toluene instead of CH3CN | 9 |
6 | DMF instead of CH3CN | Trace |
7 | DMSO instead of CH3CN | Trace |
8 | MeOH instead of CH3CN | 0 |
9 | H2O instead of CH3CN | 0 |
10 | 1a:2a=1:4, 12 h | 62 |
11 | 1a:2a=1:4, 24 h | 61 |
12c | 1a:2a=1:4, 12 h | Trace |
13 | Without PIDA | 0 |
14 | Without blue LEDs | 0 |
[1] |
(a) Hollman, P. C. H.; Hertog, M. G. L.; Katan, M. B. Biochem. Soc. Trans. 1996, 24, 785.
doi: 10.1042/bst0240785 pmid: 11172671 |
(b) Manthey, J. A.; Guthrie, N.; Grohmann, K. Curr. Med. Chem. 2001, 8, 135.
pmid: 11172671 |
|
(c) Prasad, S.; Phromnoi, K.; Yadav, V. R.; Chaturvedi, M. M.; Aggarwal, B. B. Planta Med. 2010, 76, 1044.
doi: 10.1055/s-0030-1250111 pmid: 11172671 |
|
(d) Lee, B.; Basavarajappa, H. D.; Sulaiman, X.; Fei, X.; Seo, S.-Y.; Corson, T. W. Org. Biomol. Chem. 2014, 12, 7673.
doi: 10.1039/C4OB01604A pmid: 11172671 |
|
(e) Lan, J.-S.; Xie, S.-S.; Huang, M.; Hu, Y.-J.; Kong, L.-Y.; Wang, X.-B. MedChemComm 2015, 6, 1293.
doi: 10.1039/C5MD00124B pmid: 11172671 |
|
(f) Tian, S.; Luo, T.; Zhu, Y.; Wan, J. Chin. Chem. Lett. 2020, 31, 3073.
doi: 10.1016/j.cclet.2020.07.042 pmid: 11172671 |
|
[2] |
(a) Knorr, L. Ber. Dtsch. Chem. Ges. 1884, 17, 2863.
doi: 10.1002/cber.188401702254 |
(b) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles, Wiley-VCH, 2003.
|
|
[3] |
(a) Nawghare, B.; Funde, S.; Raheem, A.; Lokhande, P. Chin. J. Chem. 2012, 30, 1695.
doi: 10.1002/cjoc.201200254 |
(b) Chen, D.-U.; Kuo, P.-Y.; Yang, D.-Y. Bioorg. Med. Chem. Lett. 2005, 15, 2665.
|
|
(c) Jiang, H.; Zheng, X.; Yin, Z.; Xie, J. J. Chem. Res. 2011, 35, 220.
doi: 10.3184/174751911X13014075196818 |
|
[4] |
(a) Ciganek, E. Synthesis 1995, 1995, 1311.
doi: 10.1055/s-1995-4100 |
(b) Hirano, K.; Biju, A.T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190.
doi: 10.1021/ja906361g |
|
(c) Pesch, J.; Harms, K.; Bach, T. Eur. J. Org. Chem. 2004, 2004, 2025.
doi: 10.1002/ejoc.200300762 |
|
[5] |
(a) Zhao, J.; Li, P.; Li, X.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 3661.
doi: 10.1039/C5CC09730D |
(b) Jung, S.; Kim, J.; Hong, S. Adv. Synth. Catal. 2017, 359, 3945.
doi: 10.1002/adsc.201701072 |
|
(c) Hu, H.; Chen, X.; Sun, K.; Wang, J.; Liu, Y.; Liu, H.; Fan, L.; Yu, B.; Sun, Y.; Qu, L.; Zhao, Y. Org. Lett. 2018, 20, 6157.
doi: 10.1021/acs.orglett.8b02627 |
|
(d) Xiong, L. Hu, H.; Wei, C.-W.; Yu, B. Eur. J. Org. Chem. 2020, 2020, 1588.
doi: 10.1002/ejoc.201901581 |
|
[6] |
(a) Scheffold, R.; Orlinski, R. J. Am. Chem. Soc. 1983, 105, 7200.
doi: 10.1021/ja00362a047 |
(b) Esposti, S.; Dondi, D.; Fagnoni, M.; Albini, A. Angew. Chem., Int. Ed. 2007, 46, 2531.
doi: 10.1002/anie.200604820 |
|
(c) Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem.- Eur. J. 2014, 20, 3045.
doi: 10.1002/chem.201304898 |
|
(d) Li, W; Zhu, Y.; Zhou, Y.; Yang, H.; Zhu, C. Tetrahedron 2019, 75, 1647.
doi: 10.1016/j.tet.2018.12.023 |
|
(e) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 483.
|
|
(f) Zhang, J.-J.; Cheng, Y.-B.; Duan, X.-H. Chin. J. Chem. 2017, 35, 311.
doi: 10.1002/cjoc.201600729 |
|
(g) Vu, M. D.; Das, M.; Liu, X.-W. Chem.-Eur. J. 2017, 23, 15899.
doi: 10.1002/chem.201704224 |
|
(h) Wang, C.-M.; Song, D.; Xia, P.-J.; Wang, J.; Xiang, H.-Y.; Yang, H. Chem. Asian J. 2018, 13, 271.
doi: 10.1002/asia.201701738 |
|
(i) Zhao, J.-J.; Zhang, H.-H.; Shen, X.; Yu, S. Org. Lett. 2019, 21, 913.
doi: 10.1021/acs.orglett.8b03840 |
|
(j) Zhang, K.; Lu, L.-Q.; Jia, Y.; Y, Wang,.; Lu, F.-D.; Pan, F.-F.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 13375.
doi: 10.1002/anie.201907478 |
|
[7] |
Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1899.
doi: 10.1002/hlca.19960790712 |
[8] |
Pesch, J.; Harms, K.; Bach, T. Eur. J. Org. Chem. 2004, 2025.
|
[9] |
Mennen, S. M.; Blank, J. T.; Tran-DubeÁ, M. B.; Imbriglio, J. E.; Miller, S. J. Chem. Commun. 2005, 195.
|
[10] |
(a) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298.
doi: 10.1021/ja027411v |
(b) Alaniz, J. R.; Kerr, M. S.; Moore, J. L.; Rovis, T. J. Org. Chem. 2008, 73, 2033.
doi: 10.1021/jo702313f |
|
(a) Biju, A. T.; Wurz, N. E.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 5970.
doi: 10.1021/ja102130s |
|
(b) Padmanaban, M.; Biju, A. T.; Glorius, F. Org. Lett. 2011, 20, 5624.
|
|
[11] |
(a) Yi, H.; Zhang, G.-T.; Wang, H.-M.; Huang, Z.-Y.; Wang, J.; Singh, A.-K.; Lei, A. Chem. Rev. 2017, 117, 9016.
doi: 10.1021/acs.chemrev.6b00620 pmid: 28585948 |
(b) Xu, P.; Li, W.-P.; Xie, J.; Zhu, C.-J. Acc. Chem. Res. 2018, 51, 484.
doi: 10.1021/acs.accounts.7b00565 pmid: 28585948 |
|
(c) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
doi: 10.1039/c6cs00912c pmid: 28585948 |
|
(d) Huang, M.-H.; Hao, W.-J.; Jiang, B. Chem. Asian J. 2018, 13, 2958.
doi: 10.1002/asia.201801119 pmid: 28585948 |
|
(e) Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Chem. Asian J. 2018, 13, 2316.
doi: 10.1002/asia.201800630 pmid: 28585948 |
|
(f) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
doi: 10.1002/anie.201903726 pmid: 28585948 |
|
[12] |
Yang, W. C.; Dai, P.; Luo, K.; Ji, Y.-G.; Wu, L. Adv. Synth. Catal. 2017, 359, 2390.
doi: 10.1002/adsc.201601407 |
[13] |
He, X.-K.; Cai, B.-G.; Yang, Q.-Q.; Wang, L.; Xuan, J. Chem. Asian J. 2019, 14, 3269.
doi: 10.1002/asia.201901078 |
[14] |
(a) Xuan, J.; Cao, X.; Cheng, X. Chem. Commun. 2018, 54, 5154.
doi: 10.1039/C8CC00787J pmid: 29215289 |
(b) Cheng, X.; Cao, X.; Xuan, J.; Xiao, W.-J. Org. Lett. 2018, 20, 52.
doi: 10.1021/acs.orglett.7b03344 pmid: 29215289 |
|
(c) Cao, X.; Cheng, X.; Xuan, J. Org. Lett. 2018, 20, 449.
doi: 10.1021/acs.orglett.7b03794 pmid: 29215289 |
|
[15] |
(d) Cai, B.-G.; Chen, Z.-L.; Xu, G.-Y.; Xuan, J.; Xiao, W.-J. Org. Lett. 2019, 21, 4234.
doi: 10.1021/acs.orglett.9b01416 |
(e) Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
doi: 10.1021/acs.orglett.1c00979 |
|
(f) Zhou, S.-J.; Cai, B.-G.; Hu, C.-X.; Cheng, X.; Li, L.; Xuan, J. Chin. Chem. Lett. 2021, 32, 2577.
doi: 10.1016/j.cclet.2021.03.010 |
|
(g) Zhou, S.-J.; Cheng, X.; Hu, C.-X.; Xu, G.-Y.; Xiao, W.-J.; Xuan, J. Sci. China Chem. 2021, 64, 61.
doi: 10.1007/s11426-020-9832-9 |
|
[16] |
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/b913880n pmid: 32195482 |
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed., 2012, 51, 6828.
doi: 10.1002/anie.201200223 pmid: 32195482 |
|
(c) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
doi: 10.1039/c3ob40137e pmid: 32195482 |
|
(d) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
doi: 10.1016/j.scib.2019.02.002 pmid: 32195482 |
|
(e) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China Chem. 2019, 62, 24.
doi: 10.1007/s11426-018-9399-2 pmid: 32195482 |
|
(f) T. -Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
doi: 10.1039/C9CC01047E pmid: 32195482 |
|
(g) Wei, Y.; Zhou, Q.-Q.; Tan, F.; Lu, L.-Q.; Xiao, W.-J. Synthesis 2019, 51, 3021
doi: 10.1055/s-0037-1611812 pmid: 32195482 |
|
(h) Shang, Xuan, J.; He, X.-K.; Xiao, W.-J. Chem. Soc. Rev. 2020, 49, 2546.
doi: 10.1039/c9cs00523d pmid: 32195482 |
|
(i) Yang, D.-S.; Yan, Q.; Zhu, E.; Lv, J.; He, W.-M. Chin. Chem. Lett. 2022, 33, 1798.
doi: 10.1016/j.cclet.2021.09.068 pmid: 32195482 |
|
(j) Chen, Z.-L.; Chen, J.-R.; Xuan, J. Chin. Chem. Lett. 2022, 33, 2763.
doi: 10.1016/j.cclet.2022.03.094 pmid: 32195482 |
|
[17] |
(a) Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712.
doi: 10.1021/acs.accounts.7b00148 pmid: 26861673 |
(b) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
doi: 10.1021/acs.chemrev.5b00547 pmid: 26861673 |
|
(c) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
doi: 10.1039/c3cc42672f pmid: 26861673 |
|
(d) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
doi: 10.1021/ja413208y pmid: 26861673 |
|
(e) Ji, W.; Tan, H.; Wang, M.; Li, Pi.; Wang, L. Chem. Commun. 2016, 52, 1462.
doi: 10.1039/C5CC08253F pmid: 26861673 |
|
(f) Yang, S.; Tan, H.; Ji, W.; Zhang, X.; Li, P.; Wang, L. Adv. Synth. Catal. 2017, 359, 443.
doi: 10.1002/adsc.201600721 pmid: 26861673 |
|
[18] |
(a) Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Org. Lett. 2018, 20, 4686.
doi: 10.1021/acs.orglett.8b02016 |
(b) Lu, J.; He, X.-K.; Cheng, X.; Zhang, A.-J.; Xu, G.-Y.; Xuan, J. Adv. Synth. Catal. 2020, 362, 2178.
doi: 10.1002/adsc.202000116 |
|
[19] |
Sivasakthikumaran, R.; Rafiq, S. M.; Sankar, E.; Clement, J. A.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2015, 2015, 7816.
doi: 10.1002/ejoc.201501087 |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[3] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[4] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[5] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[6] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[7] | 徐伟, 翟宏斌, 程斌, 汪太民. 可见光诱导的钯催化Heck反应[J]. 有机化学, 2023, 43(9): 3035-3054. |
[8] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[9] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[10] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[11] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[12] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
[13] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[14] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[15] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||