有机化学 ›› 2025, Vol. 45 ›› Issue (2): 559-573.DOI: 10.6023/cjoc202406050 上一篇 下一篇
综述与进展
收稿日期:2024-06-30
修回日期:2024-08-25
发布日期:2024-09-30
基金资助:
Junfeng Yang, Yanqiu Zhao, Lei Shi(
)
Received:2024-06-30
Revised:2024-08-25
Published:2024-09-30
Contact:
*E-mail: shileichem@dlut.edu.cn
Supported by:文章分享
由电子供体-电子受体(EDA)形成的EDA复合物正在引发一个又一个神奇的光化学反应. 在可见光照射下, EDA复合物会发生单电子转移(SET)过程, 电子从供体转移向电子受体产生自由基阴阳离子对并引发后续反应. 除了光作为外部能量来源, 这一策略无需额外的光催化剂, 反应条件温和, 使得这一体系能够兼容大多数底物. 胺类化合物特别是氮杂芳烃和脂肪胺作为富电子底物, 在近年来已被广泛用于EDA复合物中的电子供体. 并且, 这类EDA复合物引发的反应中间体具有可预测性和位点选择性, 在形成EDA复合物后N-α位具有独特的反应性质, 并被用于合成复杂的含氮有机分子. 综述了含氮化合物及烷基胺作为EDA电子供体来构建N-α位C—X键(X=C, N)的光化学反应, 并对该领域的发展进行了展望.
杨俊峰, 赵艳秋, 时磊. 电子供体-受体(EDA)复合物驱动的N-α位C—H键活化[J]. 有机化学, 2025, 45(2): 559-573.
Junfeng Yang, Yanqiu Zhao, Lei Shi. Electron Donor-Acceptor (EDA) Complex-Driven Activation of N-α C—H Bonds[J]. Chinese Journal of Organic Chemistry, 2025, 45(2): 559-573.
| [1] |
(a) Akhtar, J.; Khan, A. A.; Ali, Z.; Haider, R.; Yar, M. S. Eur. J. Med. Chem. 2017, 125, 143.
pmid: 30594028 |
|
(b) Nainwal, L. M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M. F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M. M. Eur. J. Med. Chem. 2019, 164, 121.
doi: S0223-5234(18)30984-X pmid: 30594028 |
|
|
(c) Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339.
pmid: 30594028 |
|
|
(d) Das, P.; Delost, M. D.; Qureshi, M. H.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2019, 62, 4265.
pmid: 30594028 |
|
| [2] |
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
| [3] |
(a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
|
|
(b) Bagdi, A. K.; Rahman, M.; Bhattacherjee, D.; Zyryanov, G. V.; Ghosh, S.; Chupakhin, O. N.; Hajra, A. Green Chem. 2020, 22, 6632.
|
|
| [4] |
(a) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687.
|
|
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
|
|
|
(c) Roero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
|
|
| [5] |
(a) Crsenza, G. E. M.; Mazzarella, D.; Melchiorre, P. J. Am. Chem. Soc. 2020, 142, 5461.
pmid: 37873033 |
|
(b) Wortman, A. K.; Stephenson, C. R. J. Chem 2023, 9, 2390.
doi: 10.1016/j.chempr.2023.06.013 pmid: 37873033 |
|
| [6] |
Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
|
| [7] |
(a) Yang, Z.; Liu, Y.; Cao, K.; Zhang, X.; Jiang, H.; Li, J. Beilstein J. Org. Chem. 2021, 17, 771.
|
|
(b) Tasnim, T.; Ayodele, M. J.; Pitre, S. P. J. Org. Chem. 2022, 87, 10555.
|
|
|
(c) Volkov, A. A.; Bugaenko, D. I.; Karchava, A. V. ChemCatChem 2024, 16, e202301526.
|
|
| [8] |
(a) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angew. Chem., Int. Ed. 2015, 54, 14017.
pmid: 31221855 |
|
(b) Zhang, J.; Li, Y.; Xu, R.; Chen, Y. Angew. Chem.,Int. Ed. 2017, 56, 12619.
pmid: 31221855 |
|
|
(c) Wu, J.; Grant, P. S.; Li, X.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 5697.
pmid: 31221855 |
|
|
(d) Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.
pmid: 31221855 |
|
|
(e) Bahamonde, A.; Murphy, J. J.; Savarese, M.; Bremond, E.; Cavalli, A.; Melchiorre, P. J. Am. Chem. Soc. 2017, 139, 4559.
doi: 10.1021/jacs.7b01446 pmid: 31221855 |
|
|
(f) Emmanuel, M. A.; Greenberg, N. R.; Oblinsky, D. G.; Hyster, T. K. Nature 2016, 540, 414.
pmid: 31221855 |
|
|
(g) Biegasiewicz, K. F.; Cooper, S. J.; Gao, X.; Oblinsky, D. G.; Kim, J. H.; Garfinkle, S. E.; Joyce, L. A.; Sandoval, B. A.; Scholes, G. D.; Hyster, T. K. Science 2019, 364, 1166.
doi: 10.1126/science.aaw1143 pmid: 31221855 |
|
| [9] |
(a) Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.
|
|
(b) Dong, J.; Liu, Y.; Wang, Q. Chin. J. Org. Chem. 2021, 41, 3771 (in Chinese).
|
|
|
(董建洋, 刘玉秀, 汪清民, 有机化学, 2021, 41, 3771.)
|
|
|
(c) Meng, W.; Xu, K.; Guo, B.; Zeng, C. Chin. J. Org. Chem. 2021, 41, 2621 (in Chinese).
|
|
|
(孟薇, 徐坤, 郭兵兵, 曾程初, 有机化学, 2021, 41, 2621.)
doi: 10.6023/cjoc202102001 |
|
|
(d) Ghosh, A.; Pyne, P.; Ghosh, S.; Ghosh, D.; Majumder, S.; Hajra, A. Green Chem. 2022, 24, 3056.
|
|
| [10] |
Tobisu, M.; Furukawa, T.; Chatani, N. Chem. Lett. 2013, 42, 1203.
|
| [11] |
Mo, F.; Qiu, D.; Zhang, L.; Wang, J. Chem. Rev. 2021, 121, 5741.
|
| [12] |
Fürst, M. C. D.; Gans, E.; Böck, M. J.; Heinrich, M. R. Chem.-Eur. J. 2017, 23, 15312.
|
| [13] |
Aganda, K. C. C.; Kim, J.; Lee, A. Org. Biomol. Chem. 2019, 17, 9698.
|
| [14] |
(a) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
pmid: 18020368 |
|
(b) Movassaghi, M.; Ondrus, A. E.; Chen, B. J. Org. Chem. 2007, 72, 10065.
doi: 10.1021/jo701981q pmid: 18020368 |
|
| [15] |
Kim, E.; Lee, Y.; Lee, S.; Park, S. B. Acc. Chem. Res. 2015, 48, 538.
|
| [16] |
Mane, K. D.; Rupanawar, B. D.; Suryavanshi, G. Eur. J. Org. Chem. 2022, e202200261.
|
| [17] |
Kaudukuri, S. R.; Bahamonde, A.; Chatterjee, I.; Jurberg, I. D.; Escudero-Adán, E. C.; Melchiorre, P. Angew. Chem., Int. Ed. 2015, 54, 1485.
|
| [18] |
Sharique, M.; Majhi, J.; Dhungana, R. K.; Kammer, L. M.; Krumb, M.; Lipp, A.; Romero, E.; Molander, G. A. Chem. Sci. 2022, 13, 5701.
|
| [19] |
Shi, C.; Guo, L.; Gao, H.; Luo, M.; Zhou, X.; Yang, C.; Xia, W. Org. Lett. 2023, 25, 7661.
|
| [20] |
Peng, S.; Xie, L.-Y.; Yang, L. Org. Biomol. Chem. 2023, 21, 4109.
doi: 10.1039/d3ob00448a pmid: 37128965 |
| [21] |
More, D. A.; Shirsath, S. R.; Muthukrishnan, M. J. Org. Chem. 2023, 88, 13339.
|
| [22] |
Xu, C.; Shen, F.-Q.; Feng, G.; Jin, J. Org. Lett. 2021, 23, 3913.
|
| [23] |
Xie, X.; Guo, X.; Qiao, K.; Shi, L. Org. Biomol. Chem. 2022, 20, 8031.
|
| [24] |
Hsu, C.-W.; Sundén, H. Org. Lett. 2018, 20, 2051.
|
| [25] |
Runemark, A.; Zacharias, S. C.; Sundén, H. J. Org. Chem. 2021, 86, 1901.
doi: 10.1021/acs.joc.0c02819 pmid: 33397115 |
| [26] |
Runemark, A.; Sundén, H. J. Org. Chem. 2022, 87, 1457.
doi: 10.1021/acs.joc.1c02776 pmid: 35005960 |
| [27] |
Tang, M.; Draper, F.; Pham, L. N.; Ho, C. C.; Huang, H.; Sun, J.; Thickett, S. C.; Coote, M. L.; Connell, T. U.; Bissember, A. C. J. Org. Chem. 2024, 89, 2683.
|
| [28] |
Zhang, J.; Zhang, Q.-Y.; Tu, P.-F.; Xu, F.-C.; Liang, H. J. Nat. Prod. 2018, 81, 364.
doi: 10.1021/acs.jnatprod.7b00847 pmid: 29400966 |
| [29] |
Li, Z.; Ma, P.; Tan, Y.; Liu, Y.; Gao, M.; Zhang, Y.; Yang, B.; Huang, X.; Gao, Y.; Zhang, J. Green Chem. 2020, 22, 646.
|
| [30] |
Zhang, T.; Ren, X.; Wang, B.; Jin, W.; Xia, Y.; Wu, S.; Liu, C.; Zhang, Y. Org. Chem. Front. 2024, 11, 1050.
|
| [31] |
Xia, Q.; Li, Y.; Wang, X.; Dai, P.; Deng, H.; Zhang, W. H. Org. Lett. 2020, 22, 7290.
|
| [32] |
Ma, P.; Liu, Y.; Chen, L.; Zhao, X.; Yang, B.; Zhang, J. Org. Chem. Front. 2021, 8, 2473.
|
| [33] |
Capaldo, L.; Ravelli, D.; Fagnoni, M. Chem. Rev. 2022, 122, 1875.
|
| [34] |
Xie, X.; Qiao, K.; Shao, B. R.; Jiang, W.; Shi, L. Org. Lett. 2023, 25, 4264.
|
| [35] |
Cong, F.; Zhang, W.; Zhang, G.; Liu, J.; Zhang, Y.; Zhou, C.; Wang, L. Org. Biomol. Chem. 2023, 21, 8910.
|
| [36] |
Xia, Q.; Li, Y.; Cheng, L.; Liang, X.; Cao, C.; Dai, P.; Deng, H.; Zhang, W.; Wang, Q. Org. Lett. 2020, 22, 9638.
|
| [37] |
Chen, Z.; Zheng, S.; Wang, Z.; Liao, Z.; Yuan, W. ChemPhotoChem 2021, 5, 906.
|
| [38] |
Zhao, Y.; Li, L.; Xuan, J. Adv. Synth. Catal. 2023, 365, 110.
|
| [39] |
Sui, J.; Yang, Z.; Li, S.; Chen, X.; Zhang, X.; Shen, Q.; Jiang, H.; Li, J. Chin. J. Chem. 2023, 41, 1485.
|
| [40] |
Yang, X.; Zhu, Y.; Xie, Z.; Li, Y.; Zhang, Y. Org. Lett. 2020, 22, 1638.
|
| [41] |
Wang, C.; Qi, R.; Xue, H.; Shen, Y.; Chang, M.; Chen, Y.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2020, 59, 7461.
|
| [42] |
(a) Costantino, G.; Maltoni, K.; Marinozzi, M.; Camaioni, E.; Prezeau, L.; Pin, J.-P.; Pellicciari, R. Bioorg. Med. Chem. 2001, 9, 221.
|
|
(b) Meanwell, N. A. Chem. Res. Toxicol. 2016, 29, 564.
|
|
| [43] |
Dang, X.; Li, Z.; Shang, J.; Zhang, C.; Wang, C.; Xu, Z. Angew. Chem., Int. Ed. 2024, e202400494.
|
| [1] | 范玉兰, 邹小颖, 朱小青, 郑绿茵, 郭维. N-邻位C(sp3)—H键官能团化合成含氮杂环化合物研究进展[J]. 有机化学, 2025, 45(4): 1047-1096. |
| [2] | 赵佳, 甘秋云, 袁耀锋. 自由基磺酰氟化反应研究进展[J]. 有机化学, 2025, 45(4): 1206-1222. |
| [3] | 龙涛, 何述钟, 李超. 自由基-极性交叉转化反应在天然产物全合成中的研究进展[J]. 有机化学, 2025, 45(3): 748-763. |
| [4] | 谢应, 付绍敏, 刘波. 酰基自由基化学在天然产物全合成中的应用[J]. 有机化学, 2025, 45(3): 852-861. |
| [5] | 张朝威, 徐兵斌, 刘文龙, 赵敬, 段伟良. 钯催化不对称碳氢键活化合成平面手性二茂铁磺酰胺化合物[J]. 有机化学, 2025, 45(2): 707-716. |
| [6] | 刘泽水, 郭桢桢, 牛俊龙. 过渡金属催化C—H键硅基化反应构建硅杂环研究进展[J]. 有机化学, 2025, 45(2): 423-447. |
| [7] | 令天鹏, 秦海涛, 刘峰. C(sp3)—H键对映选择性自由基反应的最新进展[J]. 有机化学, 2025, 45(2): 498-515. |
| [8] | 李伟, 王奕森, 周荣, 高文超. 光催化胺与二硫化碳合成硫脲[J]. 有机化学, 2025, 45(1): 240-245. |
| [9] | 刘慧英, 吴中天, 李昊天, 吴新鑫. 铜催化砜基诱导的区域选择性C(sp3)—H键杂芳基化反应[J]. 有机化学, 2025, 45(1): 297-306. |
| [10] | 方家恒, 田润妍, 陈继君, 刘心元. 自由基介导的α-叔胺合成研究进展[J]. 有机化学, 2025, 45(1): 22-41. |
| [11] | 蒋镓西, 刘全忠. 乙烯基重氮化合物非金属卡宾机制参与的反应[J]. 有机化学, 2024, 44(9): 2640-2657. |
| [12] | 王丽丽, 张洲, 王廷良, 王兴兰, 毛远湖, 张吉泉. t-BuOK/DMF促进的通过自由基过程实现吲哚酮的C-3位硫化反应[J]. 有机化学, 2024, 44(9): 2898-2905. |
| [13] | 张朝阳, 罗维纬, 周俊. 烯醇硅醚参与的自由基反应研究进展[J]. 有机化学, 2024, 44(9): 2658-2681. |
| [14] | 唐子然, 孙浩, 朱亮亮. 光刺激响应型聚集诱导发光材料的研究进展[J]. 有机化学, 2024, 44(8): 2393-2412. |
| [15] | 李文雅, 王煜, 陈江琦, 史丹, 张良, 余小春, 王正军. 可见光催化不对称Minisci反应研究进展[J]. 有机化学, 2024, 44(7): 2110-2123. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||