有机化学 ›› 2025, Vol. 45 ›› Issue (6): 1819-1837.DOI: 10.6023/cjoc202409038 上一篇    下一篇

综述与进展

光电化学金属催化研究进展

姚嫣, 付年凯a,b,*()   

  1. a 中国科学院化学研究所 中国科学院分子识别与功能重点实验室 北京 100190
    b 中国科学院大学 北京 100049
  • 收稿日期:2024-09-26 修回日期:2024-12-10 发布日期:2025-01-10
  • 通讯作者: 付年凯
  • 基金资助:
    国家自然科学基金(22071252)

Recent Advances in Electrophotochemical Transition Metal Catalysis

Yan Yao, Niankai Fua,b,*()   

  1. a Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
    b University of Chinese Academy of Sciences, Beijing 100049
  • Received:2024-09-26 Revised:2024-12-10 Published:2025-01-10
  • Contact: Niankai Fu
  • Supported by:
    National Natural Science Foundation of China(22071252)

光电化学金属催化融合了光化学、电化学以及金属催化的特性, 为高活性自由基的可控产生及选择性转化提供了新的研究思路. 光催化剂可以在电极表面得失电子形成相应的光敏剂, 避免传统光化学合成中等物质的量的氧化还原试剂的使用; 体系中的金属催化剂既可以作为电化学催化剂在电极表面上传递电子, 还可以和反应底物相互作用, 控制反应的路径. 这种新型的催化策略同时利用光能和电能作为反应的驱动力, 极大地降低了反应的电极电势, 从而在温和的条件下完成常规方法难以实现的电子转移活化过程. 总结了过去几年光电化学金属催化领域取得的重要研究进展, 通过选取的典型示例以及相关的反应机理解读展示该方法的合成特点及优势.

关键词: 光电化学催化, 过渡金属, 氧化还原, 自由基

Electrophotochemical transition metal catalysis integrates the characteristics of photochemistry, electrochemistry, and transition metal catalysis, providing an elegant approach for selective generation and transformation of highly reactive radical species in synthetic chemistry. Photoredox catalysts can gain or lose electrons on the electrode surface to form the corresponding photosensitizers, avoiding the use of stoichiometric redox reagents in traditional photochemical reactions. The metal catalysts in the system can both act as electrocatalysts to transfer electrons between electrodes and substrates, and interact with substrates to control the reaction pathways. This novel catalytic strategy harnesses both light and electrical energy as the driving force for the reaction, substantially reducing the electrode potential and enabling electron transfer activation processes that are commonly challenging to achieve under otherwise mild conditions. The research progress of this new field of research in the past few years is summarized, and the prospects of further developments are also discussed.

Key words: electrophotocatalysis, transition metal, redox, radical