有机化学 ›› 2025, Vol. 45 ›› Issue (8): 2938-2944.DOI: 10.6023/cjoc202501003 上一篇    下一篇

研究论文

钯催化硅环开环/交叉偶联反应机理研究

李金霞a,*(), 邓远程a, 李嘉瑜a, 郭益豪a, 王广凤a, 段阿冰c,*(), 瞿双林b,*()   

  1. a 长治医学院药学院 药物分子设计与新制剂长治市重点实验室 山西长治 046100
    b 湖南大学化学化工学院 长沙 410082
    c 湖南大学环境科学与工程学院 长沙 410082
  • 收稿日期:2025-01-04 修回日期:2025-03-12 发布日期:2025-03-31
  • 基金资助:
    湖南省青年人才(2021RC3053); 湖南省青年人才(2024RC3077); 上海市手性药物分子工程重点实验室(SMECD2024003); 长沙市自然科学基金(kq2402056); 山西省高等学校科技创新计划(2024L284); 及长治医学院博士科研启动基金(2024BS02)

Mechanistic Study of Palladium-Catalyzed Ring-Opening/Cross-Coupling Reactions of Silacycles

Jinxia Lia,*(), Yuancheng Denga, Jiayu Lia, Yihao Guoa, Guangfeng Wanga, Abing Duanc,*(), Shuanglin Qub,*()   

  1. a Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, School of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000
    b College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082
    c College of Environmental Science and Engineering, Hunan University, Changsha 410082
  • Received:2025-01-04 Revised:2025-03-12 Published:2025-03-31
  • Contact: *E-mail:squ@hnu.edu.cn;duanabing@hnu.edu.cn;lijinxia@hnu.edu.cn
  • Supported by:
    Hunan Youth Talent(2021RC3053); Hunan Youth Talent(2024RC3077); Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs(SMECD2024003); Natural Science Foundation of Changsha City(kq2402056); Science and Technology Innovation Project of Shanxi Province(2024L284); Doctoral Startup Foundation of Changzhi Medical College(2024BS02)

采用密度泛函理论计算, 详细研究了钯催化下环丁硅烷和环戊硅烷的开环/偶联反应机制以及溶剂效应. 计算结果表明, 所提出的两条反应路径能量较高, 因此提出了一条能量更合理的反应路径. 在环丁硅烷和环戊硅烷体系中, Pd(0)物种首先与底物发生C—Br键的氧化加成, 形成Pd(II)-Br物种. 随后, 由于环张力的差异, 两者开环方式不同. 环丁硅烷与Pd(II)-Br物种发生C—Si键氧化加成, 生成Pd(IV)物种, 接着通过Si—Br键的还原消除形成七元环的Pd(II)物种. 而环戊硅烷则与Br形成五配位硅中间体, 发生SN2类型转金属化开环, 直接生成八元环的Pd(II)物种. 最后, 这些Pd(II)物种通过C—C键的还原消除、Si—Br键的氧化加成及醚化反应, 分别生成含硅的四氢化萘或苯并环庚硅烷衍生物. 通过对比不同极性溶剂发现添加N,N-二甲基甲酰胺(DMF)溶剂增加了环戊硅烷体系的极性, 降低了SN2类型转金属化的能量, 从而促进了环戊硅烷的开环反应.

关键词: 环丁硅烷, 环戊硅烷, 交叉偶联反应, 密度泛函理论计算, SN2类型转金属化

Density functional theory (DFT) calculations are employed to investigate the mechanism of the Pd-catalyzed ring-opening/cross-coupling reactions of silacyclobutane and silacyclopentane, as well as the solvent effects. Computational results reveal that the two proposed reaction pathways have relatively high energy barriers. Consequently, an energetically reasonable pathway is suggested. Initially, the Pd(0) species undergoes C—Br bond oxidative addition, forming a Pd(II)-Br species. Following this, due to their distinct ring strains, the ring opening modes of the silacyclobutane and silacyclopentane systems are different. In the silacyclobutane system, the Pd(II)-Br species undergoes C—Si bond oxidative addition and the Si—Br bond reductive elimination, forming a seven-membered ring Pd(II) species. In contrast, in the silacyclopentane system, the Si atom coordinates with Br⁻ to form a five-coordinated silicon center, which then undergoes SN2-type transmetalation, generating an eight-membered ring Pd(II) species. Finally, the resulting Pd(II) species undergoes C—C bond reductive elimination, Si—Br bond oxidative addition, and etherification, producing sila-tetralins and sila-benzosuberanes. A comparison of solvents with varying polarities shows that adding N,N-dimethylacetamide (DMF) increases the polarity of the silacyclopentane system and lowers the energy of the SN2-type transmetalation, thereby facilitating the ring-opening of silacyclopentane.

Key words: silacyclobutane, silacyclopentane, cross-coupling reaction, density functional theory calculation, SN2-type transmetalation