有机化学 ›› 2025, Vol. 45 ›› Issue (12): 4290-4297.DOI: 10.6023/cjoc202506033 上一篇    下一篇

综述与进展

(杂)芳烃的电化学碳-氢膦酰化反应研究进展

刘若雨a,*(), 梁炳玉b, 陈书阳a, 孙红先a, 孙一冰a, 叶勇c,*()   

  1. a 南阳师范学院化学与制药工程学院 河南南阳 473000
    b 河南省科学院质量检验与分析测试研究中心 郑州 450000
    c 郑州大学化学学院 郑州 450000
  • 收稿日期:2025-06-26 修回日期:2025-08-08 发布日期:2025-10-09
  • 通讯作者: 刘若雨, 叶勇
  • 基金资助:
    南阳师范学院(2025STP013); 南阳科技重大专项(24KJGG015)

Recent Advances of C—H Phosphonylation of (Hetero)arenes under Electrochemical Conditions

Ruoyu Liua,*(), Bingyu Liangb, Shuyang Chena, Hongxian Suna, Yibing Suna, Yong Yec,*()   

  1. a College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473000
    b Quality Inspection and Analysis Testing Research Center, Henan Academy of Sciences, Zhengzhou 450000
    c College of Chemistry, Zhengzhou University, Zhengzhou 450000
  • Received:2025-06-26 Revised:2025-08-08 Published:2025-10-09
  • Contact: Ruoyu Liu, Yong Ye
  • Supported by:
    Nanyang Normal University(2025STP013); Nanyang Science and Technology Major Project(24KJGG015)

膦酰化的(杂)芳烃作为一类重要的有机膦化合物, 在有机催化、药物化学以及材料科学等领域展现出广泛的应用价值. 其中, (杂)芳烃的碳-氢膦酰化反应因其原子经济性和步骤简洁性, 成为构建该类化合物的最有效策略之一. 近年来, 随着有机电化学的快速发展, 电驱动的碳-氢膦酰化反应取得了重要突破. 与传统方法相比, 电化学策略具有如下显著优势: 一方面以电子替代传统化学氧化剂, 提高了反应的原子经济性; 另一方面反应条件温和, 表现出优异的官能团兼容性. 综述了(杂)芳烃电化学碳-氢膦酰化的最新研究进展, 重点阐述了反应机理, 阐明了方法的适用范围. 为便于读者理解, 依据电解模式(直接电解与间接电解), 将所讨论的反应体系划分为两大类.

关键词: 有机电化学, 电氧化, 电催化, 膦酰化, (杂)芳烃

Phosphonylated (hetero)arenes, as an important class of organophosphorus compounds, exhibit broad application value in fields such as organic catalysis, medicinal chemistry, and materials science. Among various synthetic approaches, the C—H phosphonylation of (hetero)arenes stands out as one of the most efficient strategies for synthesizing these compounds due to its atom economy and step simplicity. In recent years, with the rapid development of organic electrochemistry, significant breakthroughs have been achieved in electrochemically driven C—H phosphonylation. Compared with traditional methods, the electrochemical strategy offers distinct advantages: (1) it replaces chemical oxidants with electrons, improving atom economy, and (2) it demonstrates excellent functional group compatibility under mild conditions. This review summarizes the latest advances in the electrochemical C—H phosphonylation of (hetero)arenes, with a focus on reaction mechanisms and substrate scope. For clarity, the discussed reaction systems are categorized into two major classes based on the electrolysis mode (direct electrolysis vs. indirect electrolysis).

Key words: organic electrosynthesis, electrooxidation, electrocatalysis, phosphonylation, (hetero)arenes