[1] (a) Paulson, T. Nature 2013, 502, S2. (b) Gong, H.; Li, J.; Xu, A.; Tang, Y.; Ji, W.; Gao, R.; Wang, S.; Yu, L.; Tian, C.; Li, J.; Yen, H.-Y.; Lam, S. M.; Shui, G.; Yang, X.; Sun, Y.; Li, X.; Jia, M.; Yang, C.; Jiang, B.; Lou, Z.; Robinson, C. V.; Wong, L.-L.; Guddat, L. W.; Sun, F.; Wang, Q.; Rao, Z. Science 2018, 362, eaat8923. [2] (a) Gerard, J.; Lloyd, R.; Barsby, T.; Haden, P.; Kelly, M. T.; Andersen, R. J. J. Nat. Prod. 1997, 60, 223. (b) El Sayed, K. A.; Bartyzel, P.; Shen, X.-Y.; Perry, T. L.; Zjawiony, J. K.; Hamann, M. T. Tetrahedron 2000, 56, 949. (c) Rodríguez, I. I.; Rodríguez, A. D. J. Nat. Prod. 2003, 66, 855. (d) De Oliveira, J. H.; Grube, A.; Köck, M.; Berlinck, R. G.; Macedo, M. L.; Ferreira, A. G.; Hajdu, E. J. Nat. Prod. 2004, 67, 1685. (e) Ma, C.-Y.; Case, R. J.; Wang, Y.-H.; Zhang, H.-J.; Tan, G. T.; Hung, N. V.; Cuong, N. M.; Franzblau, S. G.; Soejarto, D. D.; Fong, H. H. S.; Pauli, G. F. Planta Med. 2005, 71, 261. (f) Winkler, J. D.; Londregan, A. T.; Hamann, M. T. Org. Lett. 2006, 8, 2591.
(g) Steinmetz, H.; Irschik, H.; Kunze, B.; Reichenbach, H.; Hoefle, G.; Jansen, R. Chem.-Eur. J. 2007, 13, 5822. (h) Thongthoom, T.; Songsiang, U.; Phaosiri, C.; Yenjai, C. Arch. Pharm. Res. 2010, 33, 675. (i) Auranwiwat, C.; Laphookhieo, S.; Trisuwan, K.; Pyne, S. G.; Ritthiwigrom, T. Phytochem. Lett. 2014, 9, 113. [3] Rodríguez, A. D.; Ramirez, C.; Rodríguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1, 527. [4] Rodríguez, I. I.; Rodríguez, A. D.; Wang, Y.; Franzblau, S. G. Tetrahedron Lett. 2006, 47, 3229. [5] Johnson, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 4475. [6] Fernando, C. R.; Calder, I. C.; Ham, K. N. J. Med. Chem. 1980, 23, 1153. [7] (a) Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210. (b) Cristau, H.-J.; Ribeill, Y. Synthesis 1988, 911. [8] (a) Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777. (b) Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. Org. Lett. 2000, 2, 2389. (c) Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L. Chem. Sci. 2019, 10, 6777. [9] Wiedenau, P.; Monse, B.; Blechert, S. Tetrahedron 1995, 51, 1167. [10] Evans, D.; Smith, C. E.; Williamson, W. R. N. J. Med. Chem. 1977, 20, 169. [11] (a) Nakahara, Y.; Fujita, A.; Beppu, K.; Ogawa, T. Tetrahedron 1986, 42, 6465. (b) Katritzky, A. R.; Musgrave, R. P.; Rachwal, B.; Zaklika, C. Heterocycles 1995, 41, 345. [12] Davidson, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486. [13] Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625. [14] Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210. [15] Corey, E. J.; Sauers, C. K. J. Am. Chem. Soc. 1957, 79, 248. [16] (a) Harmata, M.; Hong, X.; Barnes, C. L. Org. Lett. 2004, 6, 2201. (b) Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581. [17] (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731. (b) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419. [18] Harmata, M.; Kahraman, M. Synthesis 1994, 142. [19] Cary, J. M.; Moore, J. S. Org. Lett. 2002, 4, 4663. [20] Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991, 32, 2465. [21] Shi, L.; Narula, C. K.; Mak, K. T.; Kao, L.; Xu, Y.; Heck, R. F. J. Org. Chem. 1983, 48, 3894. [22] Cesati, R. R.; De Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 96. [23] (a) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 2023. (b) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 3653. [24] Smith, A. B.; Schow, S. R.; Bloom, J. D.; Thompson, A. S.; Winzenberg, K. N. J. Am. Chem. Soc. 1982, 104, 4015. [25] Williams, D. R.; Shah, A. A. J. Am. Chem. Soc. 2014, 136, 8829. [26] (a) Williams, D. R.; Fu, L. Synlett 2010, 591.
(b) Williams, D. R.; Fu, L. Synlett 2010, 1641. (c) Counceller, C. M.; Eichman, C. C.; Proust, N.; Stambuli, J. P. Adv. Synth. Catal. 2011, 353, 79. (d) Williams, D. R.; Shah, A. A. Chem. Commun. 2010, 46, 4297. [27] Ohira, S. Synth. Commun. 1989, 19, 561. [28] (a) Shibata, T.; Koga, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 911. (b) Pearson, A. J.; Dubbert, R. A. Organometallics 1994, 13, 1656. (c) Williams, D. R.; Shah, A. A.; Mazumder, S.; Baik, M.-H. Chem. Sci. 2013, 4, 238. [29] DeSolms, S. J. J. Org. Chem. 1976, 41, 2650. [30] Baker, B. A.; Boskovic, Z. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289. [31] Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527. [32] Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183. [33] Yang, M.; Yang, X.; Sun, H.; Li, A. Angew. Chem., Int. Ed. 2016, 55, 2851. [34] (a) Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1988, 29, 5565. (b) Negishi, E.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, 31, 4393. (c) Suffert, J.; Salem, B.; Klotz, P. J. Am. Chem. Soc. 2001, 123, 12107. (d) Salem, B.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 845.
(e) Salem, B.; Delort, E.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 2307. (f) Hulot, C.; Amiri, S.; Blond, G.; Schreiner, P. R.; Suffert, J. J. Am. Chem. Soc. 2009, 131, 13387. (g) Kan, S. B. J.; Anderson, E. A. Org. Lett. 2008, 10, 2323.
(h) Cordonnier, M.-C. A.; Kan, S. B. J.; Anderson, E. A. Chem. Commun. 2008, 44, 5818. (i) Cordonnier, M.-C. A.; Kan, S. B. J.; Gockel, B.; Goh, S. S.; Anderson, E. A. Org. Chem. Front. 2014, 1, 661. [35] (a) Lu, Z.; Li, Y.; Deng, J.; Li, A. Nat. Chem. 2013, 5, 679. (b) Li, J.; Yang, P.; Yao, M.; Deng, J.; Li, A. J. Am. Chem. Soc. 2014, 136, 16477. (c) Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K. C.; Li, A. J. Am. Chem. Soc. 2012, 134, 8078. (d) Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D. J.; Zhong, J.; Li, A. Nat. Commun. 2015, 6, 6096.
(e) Yang, M.; Li, J.; Li, A. Nat. Commun. 2015, 6, 6445.
(f) Wan, M.; Yao, M.; Gong, J.; Yang, P.; Liu, H.; Li, A. Chin. Chem. Lett. 2015, 26, 272. (g) Lu, Z.; Li, H.; Bian, M.; Li, A. J. Am. Chem. Soc. 2015, 137, 13764. [36] Yadav, J. S.; Bhasker, E. V.; Geetha, V.; Srihari, P. Tetrahedron 2010, 66, 1997. [37] Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J. Org. Chem. 1991, 56, 7076. [38] (a) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640. (b) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Bräse, S. J. Am. Chem. Soc. 2009, 131, 2086. [39] Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182. [40] Félix, G.; Dunoguès, J.; Pisciotti, F.; Galas, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 488. [41] Blakemore, P. R.; Cole, W. J.; Kocieński, P. J.; Morley, A. Synlett 1998, 26. [42] Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130. [43] (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379. (b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin Trans. 1 1977, 869. (c) Gilbert, J. C.; Weerasooriya, U. J. Org. Chem. 1979, 44, 4997. [44] Suárez, A.; Fu, G. C.; Angew. Chem., Int. Ed. 2004, 43, 3580. [45] Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. J. Am. Chem. Soc. 2016, 138, 6261. [46] (a) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039. (b) Alexakis, A.; Krause, N.; Woodward, S. In Copper-Catalyzed Asymmetric Synthesis, Eds.:Alexakis, A.; Krause, N.; Woodward, S., Wiley-VCH, Weinheim, 2014, Chapter 2, pp. 33~68. [47] Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124, 5262. [48] Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. 1989, 54, 1785. [49] Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324. [50] McCulloch, M. W. B.; Berrue, F.; Haltli, B.; Kerr, R. G. J. Nat. Prod. 2011, 74, 2250. [51] Zhang, X.; Fang, X.; Xu, M.; Lei, Y.; Wu, Z.; Hu, X. Angew. Chem., Int. Ed. 2019, 58, 7845. [52] (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065. (b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020. (c) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185. (d) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2015, 54, 6878. (e) Jiang, S.; Zeng, X.; Liang, X.; Lei, T.; Wei, K.; Yang, Y. Angew. Chem., Int. Ed. 2016, 55, 4044. (f) Liang, X.; Zhang, T.-Y.; Zeng, X.-Y.; Zheng, Y.; Wei, K.; Yang, Y.-R. J. Am. Chem. Soc. 2017, 139, 3364. (g) Zhou, S.; Guo, R.; Yang, P.; Li, A. J. Am. Chem. Soc. 2018, 140, 9025. (h) Liang, X.; Zhang, T.; Meng, C.; Li, X.; Wei, K.; Yang, Y. Org. Lett. 2018, 20, 4575. (i) Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485. [53] Hou, S.-H.; Prichina, A. Y.; Zhang, M.; Dong, G. Angew. Chem., Int. Ed. 2020, 59, 7848. [54] Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765. [55] Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546. [56] Zhang, S.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2015, 137, 531. [57] (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778. (b) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096. (c) Elford, T. G.; Nave, S.; Sonawane, R. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2011, 133, 16798. (d) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174. [58] (a) Escarcena, R.; Perez-Meseguer, J.; del Olmo, E.; Alanis-Garza, B.; Garza-Gonzalez, E.; Salazar-Aranda, R.; De Torres, N. W. Molecules 2015, 20, 7245. (b) Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689. (c) Wang, D.-Y.; Guo, S.-H.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q. Org. Lett. 2018, 20, 1794. [59] (a) Zhang, Y.; C. Li, J. J. Am. Chem. Soc. 2006, 128, 4242. (b) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152.
(c) Lingamurthy, M.; Jagadeesh, Y.; Ramakrishna, K.; Rao, B. V. J. Org. Chem. 2016, 81, 1367. (d) Morales-Rivera, C. A.; Floreancig, P. E.; Liu, P. J. Am. Chem. Soc. 2017, 139, 17935. |