有机化学 ›› 2022, Vol. 42 ›› Issue (3): 698-713.DOI: 10.6023/cjoc202109025 上一篇 下一篇
综述与进展
收稿日期:
2021-09-17
修回日期:
2021-11-01
发布日期:
2021-11-17
通讯作者:
蔡泉
基金资助:
Received:
2021-09-17
Revised:
2021-11-01
Published:
2021-11-17
Contact:
Quan Cai
Supported by:
文章分享
2-吡喃酮是一种含有共轭二烯的杂环化合物, 它可以作为一种特殊的双烯体参与Diels-Alder反应. 经过几十年的发展, 2-吡喃酮的Diels-Alder反应在复杂天然产物的合成中得到了广泛地应用. 近年来, 2-吡喃酮的催化不对称Diels-Alder反应也引起了合成化学家的关注. 对2-吡喃酮参与的不对称正电子需求和反电子需求的Diels-Alder反应的发展, 以及它们在天然产物全合成中的应用进行了总结.
徐萌萌, 蔡泉. 2-吡喃酮的催化不对称Diels-Alder反应研究进展[J]. 有机化学, 2022, 42(3): 698-713.
Mengmeng Xu, Quan Cai. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones[J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 698-713.
[1] |
Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98.
doi: 10.1002/(ISSN)1099-0690 |
[2] |
(a) Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17.
doi: 10.1021/ar50001a003 |
(b) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.
doi: 10.1002/(ISSN)1521-3773 |
|
(c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T. M.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.
doi: 10.1002/(ISSN)1521-3773 |
|
[3] |
Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1931, 490, 257.
doi: 10.1002/(ISSN)1099-0690 |
[4] |
(a) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H. Tetrahedron 1992, 48, 9111.
doi: 10.1016/S0040-4020(01)85607-6 |
(b) Cai, Q. Chin. J. Chem. 2019, 37, 946.
doi: 10.1002/cjoc.v37.9 |
|
(c) Huang, G.; Kouklovsky, C.; de la Torre, A. Chem.-Eur. J. 2021, 27, 4760.
doi: 10.1002/chem.v27.15 |
|
[5] |
Watt, D. S.; Corey, E. J. Tetrahedron Lett. 1972, 13, 4651.
doi: 10.1016/S0040-4039(01)94389-8 |
[6] |
(a) Nicolaou, K. C.; Liu, J. J.; Hwang, C.-K.; Dai, W.-M.; Guy, R. K. J. Chem. Soc., Chem. Commun. 1992, 1118.
|
(b) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1997, 367, 630.
doi: 10.1038/367630a0 |
|
[7] |
Baran, P. S.; Burns, N. Z. J. Am. Chem. Soc. 2006, 128, 3908.
pmid: 16551088 |
[8] |
Shim, I.-J.; Choi, E.-S.; Cho, C.-G. Angew. Chem., Int. Ed. 2007, 46, 2303.
doi: 10.1002/(ISSN)1521-3773 |
[9] |
Smith, M. W.; Synder, S. A. A. J. Am. Chem. Soc. 2013, 135, 12964.
doi: 10.1021/ja406546k |
[10] |
Yu, X.; Xiao, L.; Wang, Z.; Luo, T. J. Am. Chem. Soc. 2019, 141, 3440.
doi: 10.1021/jacs.9b00621 |
[11] |
Okamura, H.; Nakamura, Y.; Iwagawa, T.; Nakatani, M. Chem. Lett. 1996, 193.
|
[12] |
Shen, J.; Tan, C.-H. Org. Biomol. Chem. 2008, 6, 3229.
doi: 10.1039/b809505c |
[13] |
Wang, Y.; Li, H.; Wang, Y.-Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2007, 129, 6364.
pmid: 17469829 |
[14] |
Singh, R. P.; Bartelson, K.; Wang, Y.; Su, H.; Lu, X.; Deng, L. J. Am. Chem. Soc. 2008, 130, 2422.
doi: 10.1021/ja078251w pmid: 18251543 |
[15] |
Soh, J. Y.-T.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 6904
doi: 10.1021/ja900582a |
[16] |
Bartelson, K. J.; Singh, R. P.; Foxman, B. M.; Deng, L. Chem. Sci. 2011, 2, 1940.
pmid: 22174973 |
[17] |
Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357.
doi: 10.1021/ja00141a030 |
[18] |
Shi, L.-M. Dong, W.-W.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Org. Lett. 2017, 19, 4532.
doi: 10.1021/acs.orglett.7b02107 |
[19] |
Suzuki, T.; Watanabe, S.; Kobayashi, S.; Tanino, K. Org. Lett. 2017, 19, 922.
doi: 10.1021/acs.orglett.7b00085 |
[20] |
Toyota, M.; Yoshida, T.; Kan, Y.; Takaoka, S.; Asakawa, Y. Tetrahedron Lett. 1996, 37, 4745.
doi: 10.1016/0040-4039(96)00956-2 |
[21] |
Zhao, P.; Beaudry, C. M. Angew. Chem., Int. Ed. 2014, 53, 10500.
doi: 10.1002/anie.201406621 |
[22] |
Adolf, W.; Hecker, E. Isr. J. Chem. 1977, 16, 75.
doi: 10.1002/ijch.v16:1 |
[23] |
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770.
doi: 10.1021/acs.jnatprod.9b01285 pmid: 32162523 |
[24] |
(a) Wender, P. A.; Kogen, H.; Lee, H. Y.; Munger, J. D., Jr.; Wilhelm, R. S.; Williams, P. D. J. Am. Chem. Soc. 1989, 111, 8957.
doi: 10.1021/ja00206a050 pmid: 18451298 |
(b) Wender, P. A.; McDonald, F. E. J. Am. Chem. Soc. 1990, 112, 4956.
doi: 10.1021/ja00168a050 pmid: 18451298 |
|
(c) Wender, P. A.; Rice, K. D.; Schnute, M. E. J. Am. Chem. Soc. 1997, 119, 7897.
doi: 10.1021/ja9706256 pmid: 18451298 |
|
(d) Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976.
doi: 10.1021/ja972279y pmid: 18451298 |
|
(e) Wender, P. A.; Kee, J.-M.; Warrington, J. M. Science 2008, 320, 649.
doi: 10.1126/science.1154690 pmid: 18451298 |
|
[25] |
Lee, K.; Cha, J. K. J. Am. Chem. Soc. 2001, 123, 5590.
pmid: 11389648 |
[26] |
Kawamura, S.; Chu, H.; Felding, J.; Baran, P. S. Nature 2016, 532, 90.
doi: 10.1038/nature17153 |
[27] |
(a) Tong, G.; Liu, Z.; Li, P. Chem 2018, 4, 2944.
doi: 10.1016/j.chempr.2018.10.002 |
(b) Tong, G.; Ding, Z.; Liu, Z.; Ding, Y.-S.; Xu, L.; Zhang, H.; Li, P. J. Org. Chem. 2020, 85, 4813.
doi: 10.1021/acs.joc.0c00022 |
|
(c) Ding, Z.; Liu, Z.; Tong, G.; Hu, L.; He, Y.; Bao, Y.; Lei, Z.; Zhang, H.; Li, P. Org. Chem. Front. 2020, 7, 1862.
doi: 10.1039/D0QO00424C |
|
[28] |
Yu, T.; Sun, Y.; Tu, C.; Chen, T.; Fu, S.; Liu, B. Chem. Sci. 2020, 11, 7177.
doi: 10.1039/D0SC02829K |
[29] |
(a) Asaba, T.; Katoh, Y.; Urabe, D.; Inoue, M. Angew. Chem., Int. Ed. 2015, 54, 14457.
doi: 10.1002/anie.v54.48 pmid: 29041773 |
(b) Urabe, D.; Asaba, T.; Inoue, M. Bull. Chem. Soc. Jpn. 2016, 89, 1137.
doi: 10.1246/bcsj.20160208 pmid: 29041773 |
|
(c) Hashimoto, S.; Katoh, S.; Kato, T.; Urabe, D.; Inoue, M. J. Am. Chem. Soc. 2017, 139, 16420.
doi: 10.1021/jacs.7b10177 pmid: 29041773 |
|
[30] |
Hirose, A.; Watanabe, A.; Ogino, K.; Nagatomo, M.; Inoue, M. J. Am. Chem. Soc. 2021, 143, 12387.
doi: 10.1021/jacs.1c06450 |
[31] |
(a) Oppolzer, W. Angew. Chem., Int. Ed. 1984, 23, 876.
doi: 10.1002/(ISSN)1521-3773 |
(b) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
doi: 10.1021/cr00013a013 |
|
(c) Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004, 37, 580.
doi: 10.1021/ar0300468 |
|
[32] |
Markό, I. E.; Evans, G. R. Tetrahedron Lett. 1994, 35, 2771.
|
[33] |
Posner, G. H.; Eydoux, F.; Lee, J. K.; Bull, D. S. Tetrahedron Lett. 1994, 35, 7541.
doi: 10.1016/S0040-4039(00)78338-9 |
[34] |
(a) Lythgoe, B. Chem. Soc. Rev. 1980, 449.
|
(b) Kocienski, P. J.; Lythgoe, B. V. J. Chem. Soc., Perkin Trans. 1 1980, 1400.
|
|
[35] |
Markό, I. E.; Warriner, S. L.; Augustyns, B. Org. Lett. 2000, 2, 3123.
doi: 10.1021/ol006324+ |
[36] |
Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.
doi: 10.1021/ar800104y |
[37] |
Burch, P.; Binaghi, M.; Scherer, M.; Wentzel, C.; Bossert, D.; Eberhardt, L.; Neuburger, M.; Scheiffele, P.; Gademann, K. Chem.- Eur. J. 2013, 19, 2589.
doi: 10.1002/chem.201203746 |
[38] |
(a) Gibson, D. T.; Koch, J. R.; Kallio, R. E. Biochemistry 1968, 7, 2653.
pmid: 5722247 |
(b) Gibson, D. T.; Koch, J. R.; Schuld, C. L.; Kallio, R. E. Biochemistry 1968, 7, 3795.
pmid: 5722247 |
|
[39] |
(a) Duchek, J.; Adams, D. R.; Hudlicky, T. Chem. Rev. 2011, 111, 4223.
doi: 10.1021/cr1004138 pmid: 30613812 |
(b) Reed, J. W.; Hudlicky, T. Acc. Chem. Res. 2015, 48, 674.
doi: 10.1021/ar500427k pmid: 30613812 |
|
(c) Hudlicky, T. ACS Omega 2018, 3, 17326.
doi: 10.1021/acsomega.8b02994 pmid: 30613812 |
|
[40] |
Liang, X.-W.; Zhao, Y.; Si, X.-G.; Xu, M.-M.; Tan, J.-H.; Zhang, Z.-M.; Zheng, C.-G.; Zheng, C.; Cai, Q. Angew. Chem., Int. Ed. 2019, 58, 14562.
doi: 10.1002/anie.v58.41 |
[41] |
For selected reviews, see: Li, G.; Kusari, S.; Spiteller, M. Nat. Prod. Rep. 2014, 31, 1175.
doi: 10.1039/C4NP00031E pmid: 25514696 |
(b) Schnermann, M. J.; Shenvi, R. A. Nat. Prod. Rep. 2015, 32, 543.
doi: 10.1039/c4np00109e pmid: 25514696 |
|
[42] |
(a) Singh, V.; Iyer, S. R.; Pal, S. Tetrahedron 2005, 61, 9197.
doi: 10.1016/j.tet.2005.06.102 pmid: 25891138 |
(b) Dhambri, S.; Mohammad, S.; Nguyen Van Buu, O.; Galvani, G.; Meyer, Y.; Lannou, M.-I.; Sorin, G.; Ardisson, J. Nat. Prod. Rep. 2015, 32, 841.
doi: 10.1039/c4np00142g pmid: 25891138 |
|
[43] |
Si, X.-G.; Zhang, Z.-M.; Zheng, C.-G.; Li, Z.-T.; Cai, Q. Angew. Chem., Int. Ed. 2020, 59, 18412.
doi: 10.1002/anie.v59.42 |
[44] |
Xu, M.-M.; You, X.-Y.; Zhang, Y.-Z.; Lu, Y.; Yang, L.-M.; Cai, Q. J. Am. Chem. Soc. 2021, 143, 8993.
doi: 10.1021/jacs.1c04759 |
[45] |
Zhou, Y.; Zhou, Z.; Du, W.; Chen, Y. Acta Chim. Sinica 2018, 76, 382. (in Chinese)
doi: 10.6023/A18040131 |
(周远春, 周志, 杜玮, 陈应春, 化学学报, 2018, 76, 382.)
doi: 10.6023/A18040131 |
|
[46] |
Cole, C.; Fuentes, L.; Snyder, S. A. Chem. Sci. 2020, 11, 2175.
doi: 10.1039/C9SC05738B |
[1] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[2] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[3] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[4] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[5] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[6] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[7] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[8] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[9] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[10] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[11] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[12] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
[13] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[14] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[15] | 陈运荣, 刘炜, 杨晓瑜. 叔醇的动力学拆分研究进展[J]. 有机化学, 2022, 42(3): 679-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||