有机化学 ›› 2020, Vol. 40 ›› Issue (11): 3559-3595.DOI: 10.6023/cjoc202006072 上一篇 下一篇
所属专题: 创刊四十周年专辑
综述与进展
华庭碧a,b, 阳青青a,b, 肖文精c
收稿日期:
2020-06-30
修回日期:
2020-09-04
发布日期:
2020-09-16
通讯作者:
阳青青, 肖文精
E-mail:qingqing_yang@ctgu.edu.cn;wxiao@mail.ccnu.edu.cn
基金资助:
Hua Tingbia,b, Yang Qingqinga,b, Xiao Wengjingc
Received:
2020-06-30
Revised:
2020-09-04
Published:
2020-09-16
Supported by:
文章分享
在环状偶氮次甲基亚胺类1,3-偶极子中,C,N-环状偶氮次甲基亚胺是使用最广泛的反应试剂,用于结构多样化的四氢异喹啉衍生物的构建.简单综述了C,N-环状偶氮次甲基亚胺参与的反应研究进展,重点介绍[3+2]、[3+3]、[3+4]、[5+1]、[3+1]环加成以及其他反应,并讨论了反应的特点、反应过程及合成应用,最后展望了它的发展前景.
华庭碧, 阳青青, 肖文精. C,N-环状偶氮次甲基亚胺参与的反应研究进展[J]. 有机化学, 2020, 40(11): 3559-3595.
Hua Tingbi, Yang Qingqing, Xiao Wengjing. Recent Developments of Reactions with C,N-Cyclic Azomethine Imines[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3559-3595.
[1] (a) Liu, C. J.; Liu, D. Y.; Xiang, L. Acta Pharm. Sin. 2010, 45, 9. (b) Blay, J.-Y. Eur. J. Clin. Med. Oncol. 2010, 2, 1. (c) Vincenzi, B.; Napolitano, A.; Frezza, A. M.; Schiavon, G.; Santini, D.; Tonini, G. Pharmacogenomics 2010, 11, 865. (d) Carter, N. J.; Keam, S. J. Drugs 2010, 70, 355. [2] (a) Aune, G. J.; Furuta, T.; Pommier, Y. Anti-Cancer Drugs 2002, 13, 545. (b) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669. (c) Mujahidin, D.; Doye, S. Eur. J. Org. Chem. 2005, 2005, 2689. (d) Bentley, K. W. Nat. Prod. Rep. 2006, 23, 444. (e) Werner, F.; Blank, N.; Opatz, T. Eur. J. Org. Chem. 2007, 2007, 3911. (f) Reddy, R. J.; Kawai, N.; Uenishi, J. J. Org. Chem. 2012, 77, 11101. [3] (a) Sekine Y.; Brossi, A. J. Nat. Prod. 1990, 53, 533. (b) Luk, L. Y. P.; Bunn, S.; Liscombe, D. K.; Facchini, P. J.; Tanner, M. E. Biochemistry 2007, 46, 10153. (c) Minami, H.; Dubouzet, E.; Iwasa, K.; Sato, F. J. Biol. Chem. 2007, 282, 6274. [4] (a) Chang, F.-R.; Wu, Y.-C. J. Nat. Prod. 2005, 68, 1056. (b) Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y.-P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K.-H. Bioorg. Med. Chem. 2005, 13, 443. [5] (a) Padwa, A.; Danca, M. D. Org. Lett. 2002, 4, 715. (b) Simpkins, N. S.; Gill, C. D. Org. Lett. 2003, 5, 535 (c) Pérard-Viret, J.; Souquet, F.; Manisse, M.-L.; Royer, J. Tetrahedron Lett. 2010, 51, 96. [6] (a) Yang, Z.; Liu, C.; Xiang, L.; Zheng, Y. Phytother. Res. 2009, 23, 1032. [7] (a) Davis, F. A.; Mohanty, P. K. J. Org. Chem. 2002, 67, 1290. (b) Benmekhbi, L.; Louafi, F.; Roisnel, T.; Hurvois, J.-P. J. Org. Chem. 2016, 81, 6721. [8] (a) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 50, 7171. (b) An, J.; Yang, Q.-Q.; Wang, Q.; Xiao, W.-J. Tetrahedron Lett. 2013, 54, 3834. (c) Feng, Z.-J.; Xuan, J.; Xia, X.-D.; Ding, W.; Guo, W.; Chen, J.-R.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Org. Biomol. Chem. 2014, 12, 2037. (d) Feng, Z.-J.; Zeng, T.-T.; Xuan, J.; Liu, Y.-H.; Lu, L.-Q.; Xiao, W.-J. Sci. China:Chem. 2016, 59, 171. (e) Cheng, X.; Cao, X.; Xuan, J.; Xiao, W.-J. Org. Lett. 2018, 20, 52. (f) Cheng, X.; Cao, X.; Zhou, S.-J.; Cai, B.-G.; He, X.-K.; Xuan, J. Adv. Synth. Catal. 2019, 361, 1230. (g) Kaur, P.; Kumar, R. Chem. Heterocycl. Compd. 2020, 56, 422. [9] (a) Wang, F.; Bai, D.-L. Chin. J. Org. Chem. 2006, 26, 9(in Chinese). (王峰, 白东鲁, 有机化学, 2006, 26, 9.) (b) Qiu, G. Y. S.; Kuang, Y. Y.; Wu, J. Adv. Synth. Catal. 2014, 356, 3483. (c) Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596. (d) Li, Z. Ph.D. Dissertation, China Agricultural University, Beijing, 2015 (in Chinese). (理珍, 博士论文, 中国农业大学, 北京, 2015.) (e) Yuan, B.-B.; Li, Y.-N.; Guo, J.-M.; Wang, Q.-L.; Bu, Z.-W. Chem. Res. 2017, 28, 135(in Chinese). (袁贝贝, 李雅宁, 郭娇美, 王琪琳, 卜站伟, 化学研究, 2017, 28, 135.) (f) Zhang, L. M.S. Thesis, Chongqing University, Chongqing, 2018 (in Chinese). (张龙, 硕士论文, 重庆大学, 重庆, 2018.) (g) Grošelj, U.; Svete, J.; Al Mamari, H. H.; Požgan, F.; Štefane, B. Chem. Heterocycl. Compd. 2018, 54, 214. (h) Grošelj, U.; Požgan, F.; Štefane, B.; Svete, J. Synthesis 2018, 50, 4525. (i) Le, G. Z.; Liu, B. Chin. J. Org. Chem. 2020, 40, 3132(in Chinese). (乐贵洲, 刘波, 有机化学, 2020, 40, 3132.) [10] (a) Tamura, Y.; Minamikawa, J.-I.; Miki, Y.; Okamoto, Y.; Ikeda, M. Yakugaku Zasshi 1973, 93, 648. (b) Truce, W. E.; Allison, J. R. J. Org. Chem. 1975, 40, 2260. [11] Hashimoto, T.; Maeda, Y.; Omote, M.; Nakatsu, H.; Maruoka, K. J. Am. Chem. Soc. 2010, 132, 4076. [12] Zhou, W.; Chen, P.; Tao, M. N.; Su, X.; Zhao, Q. J.; Zhang, J. L. Chem. Commun. 2016, 52, 7612. [13] Milosevic, S.; Togni, A. J. Org. Chem. 2013, 78, 9638. [14] Qurban, S.; Du, Y.; Gong, J.; Lin, S.-X.; Kang, Q. Chem. Commun. 2019, 55, 249. [15] Afanaseva, K. K.; Efremova, M. M.; Kuznetsova, S. V.; Ivanov, A. V.; Starova, G. L.; Molchanov, A. P. Tetrahedron 2018, 74, 5665. [16] Ling, L.; Chen, J. Q.; Song, J. H.; Zhang, Y. H.; Li, X. Q.; Song, L. J.; Shi, F.; Li, Y. X.; Wu, C. R. Org. Biomol. Chem. 2013, 11, 3894. [17] Alcaide, B.; Almendros, P.; Quirs, M. T. Chem.-Eur. J. 2014, 20, 3384. [18] Li, Z.; Yu, H.; Liu, H. L.; Zhang, L.; Jiang, H.; Wang, B.; Guo, H. C. Chem.-Eur. J. 2014, 20, 1731. [19] Jia, Q. F.; Chen, L.; Yang, G. M.; Wang, J.; Wei, J.; Du, Z. Y. Tetrahedron Lett. 2015, 56, 7150. [20] Jing, C. F.; Na, R. S.; Wang, B.; Liu, H. L.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J. C.; Kwon, O.; Guo, H. C. Adv. Synth. Catal. 2012, 354, 1023. [21] Wang, D.; Lei, Y.; Wei, Y.; Shi, M. Chem.-Eur. J. 2014, 20, 15325. [22] Li, W. J.; Jia, Q. F.; Du, Z. Y.; Zhang, K.; Wang, J. Chem.-Eur. J. 2014, 20, 4559. [23] Li, W. J.; Wei, J.; Jia, Q. F.; Du, Z. Y.; Zhang, K.; Wang, J. Chem.-Eur. J. 2014, 20, 6592. [24] Izquierdo, C.; Esteban, F.; Parra, A.; Alfaro, R.; Alemán, J.; Fraile, A.; García Ruano, J. L. J. Org. Chem. 2014, 79, 10417. [25] Hesping, L.; Biswas, A.; Daniliuc, C. G.; Mück-Lichtenfeld, C.; Studer, A. Chem. Sci. 2015, 6, 1252. [26] (a) Li, B.-S.; Wang, Y. H.; Jin, Z. C.; Chi, Y. R. Chem. Sci. 2015, 6, 6008. (b) Kirmse, W.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1984, 106, 7989. [27] Gao, Z. H.; Chen, X. Y.; Cheng, J. T.; Liao, W. L.; Ye, S. Chem. Commun. 2015, 51, 9328. [28] Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. Nat. Chem. 2015, 7, 842. [29] Zhang, P. F.; Zhou, Y.; Han, X.; Xu, J. Y.; Liu, H. J. Org. Chem. 2018, 83, 3879. [30] Kobayashi, M.; Kondo, K.; Aoyama, T. Tetrahedron Lett. 2007, 48, 7019. [31] Liu, X. H.; Wang, Y. J.; Yang, D. X.; Zhang, J. L.; Liu, D. S.; Su, W. Angew. Chem., Int. Ed. 2016, 55, 8100. [32] Hashimoto, T.; Omote, M.; Maruoka, K. Angew. Chem., Int. Ed. 2011, 50, 3489. [33] Wang, Y.; Wang, Q.; Zhu, J. P. Chem.-Eur. J. 2016, 22, 8084. [34] Mousseau, J. J.; Fortier, A.; Charette, A. B. Org. Lett. 2010, 12, 516. [35] Mousseau, J. J.; Bull, J. A.; Ladd, C. L.; Fortier, A.; Roman, D. S.; Charette, A. B. J. Org. Chem. 2011, 76, 8243. [36] Zhou, W.; Li, X.-X.; Li, G.-H.; Wu, Y.; Chen, Z. L. Chem. Commun. 2013, 49, 3552. [37] Mao, B. M.; Xu, Y.; Chen, Y. H.; Dong, J. P.; Zhang, J. Y.; Gu, K. J.; Zheng, B.; Guo, H. C. Org. Lett. 2019, 21, 4424. [38] Mao, B. M.; Zhang, J. Y.; Xu, Y.; Yan, Z. Y.; Wang, W.; Wu, Y. J.; Sun, C. Q.; Zheng, B.; Guo, H. C. Chem. Commun. 2019, 55, 12841. [39] Koptelov, Y. B.; Saik, S. P.; Molchanov. A. P. Russ. J. Org. Chem. 2011, 47, 537. [40] Koptelov, Y. B.; Molchanov, A. P.; Kostikov, R. R. Russ. J. Org. Chem. 2015, 51, 11343. [41] Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 5330. [42] Wang, D.; Deng, H.-P.; Wei, Y.; Xu, Q.; Shi, M. Eur. J. Org. Chem. 2013, 2, 401. [43] Liu, X. H.; Yang, D. X.; Wang, K. Z.; Zhang, J. L.; Wang, R. Green Chem. 2017, 19, 82. [44] Hu, F. Z.; Chen, H.; Zhang, M. M.; Yu, S. W.; Xu, X. Y.; Yuan, W. C.; Zhang, X. M. J. Heterocycl. Chem. 2017, 54, 2922. [45] (a) Hong, L.; Kai, M.; Wu, C.; Sun, W.; Zhu, G.; Li, G.; Yao, X.; Wang, R. Chem. Commun. 2013, 49, 6713. (b) Yin, C.; Lin, L.; Zhang, D.; Feng, J.; Liu, X.; Feng, X. J. Org. Chem. 2015, 80, 9691. (c) Lu, Y. L.; Sun, J.; Jiang, Y. H.; Yan, C. G. RSC Adv. 2016, 6, 50471. [46] Wu, Y. F.; Tian, B.; Hu, C.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Biomol. Chem. 2019, 17, 5505. [47] Na, R. S.; Liu, H. L.; Li, Z.; Wang, B.; Liu, J.; Wang, M.-A.; Wang, M.; Zhong, J. C.; Guo, H. C. Tetrahedron 2012, 68, 2349. [48] Zhang, L.; Jing, C. F.; Liu, H. L.; Wang, B.; Li, Z.; Jiang, H.; Yu, H.; Guo, H. C. Synthesis 2013, 45, 0053. [49] Li, F. L.; Chen, J. F.; Hou, Y. D.; Li, Y. J.; Wu, X.-Y.; Tong, X. F. Org. Lett. 2015, 17, 5376. [50] He, L. W. Z.; Liu, L.; Han, R. F.; Zhang, W. W.; Xie, X. G.; She, X. G. Org. Biomol. Chem. 2016, 14, 6757. [51] Zhao, J. J.; Li, P.; Wu, C. R.; Chen, H. L.; Ai, W. Y.; Sun, R. H.; Ren, H. L.; Larockb, R. C.; Shi, F. Org. Biomol. Chem. 2012, 10, 1922. [52] Li, Y.-K.; Cui, M.-X.; Sha, F.; Li, Q.; Wu, X.-Y. Org. Biomol. Chem. 2019, 17, 8963. [53] Zhang, L.; Liu, H. L.; Qiao, G. Y.; Hou, Z. F.; Liu, Y.; Xiao, Y. M.; Guo, H. C. J. Am. Chem. Soc. 2015, 137, 4316. [54] Li, Z.; Yu, H.; Liu, Y.; Zhou, L. J.; Sun, Z. H.; Guo, H. C. Adv. Synth. Catal. 2016, 358, 1880. [55] (a) Xia, Y. Z.; Liang, Y.; Chen, Y. Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y. H.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 3470. (b) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617. (c) Liang, Y.; Liu, S.; Xia, Y. Z.; Li, Y. H.; Yu, Z. X. Chem.-Eur. J. 2008, 14, 4361. (d) Liang, Y.; Liu, S.; Yu, Z. X. Synlett 2009, 905. (e) Huang, G.-T.; Lankau, T.; Yu, C.-H. J. Org. Chem. 2014, 79, 1700. [56] Zhu, C.-Z.; Feng, J.-J.; Zhang, J. L. Chem. Commun. 2017, 53, 4688. [57] Yu, L.; Zhong, Y.; Yu, J.; Gan, L.; Cai, Z. J.; Wang, R.; Jiang, X. X. Chem. Commun. 2018, 54, 2353. [58] Zhou, Y.-Y.; Li, J.; Ling, L.; Liao, S.-H.; Sun, X.-L.; Li, Y.-X.; Wang, L.-J.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 1452. [59] Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int. Ed. 2013, 52, 12664. [60] Marichev, K. O.; Adly, F. G.; Carranco, A. M.; Garcia, E. C.; Arman, H.; Doyle, M. P. ACS Catal. 2018, 8, 10392. [61] Wang, K. K.; Li, Y. L.; Wang, Z. Y.; Hu, M. W.; Qiua, T. T.; Zhu, B. K. Org. Biomol. Chem. 2019, 17, 244. [62] Li, Z.; Yu, H.; Feng, Y. L.; Hou, Z. F.; Zhang, L.; Yang, W. J.; Wu, Y.; Xiao, Y. M.; Guo, H. C. RSC Adv. 2015, 5, 34481. [63] Wang, Y. F.; Zhu, L. P.; Wang, M. R.; Xiong, J. L.; Chen, N. N.; Feng, X.; Xu, Z. Q.; Jiang, X. X. Org. Lett. 2018, 20, 6506. [64] (a) Wang, Q.; Li, T.-R.; Liu, L.-Q.; Li, M.-M.; Zhang, K.; Xiao, W.-J. J. Am. Chem. Soc. 2016, 138, 8360. (b) Li, T.-R.; Wang, Y.-N.; Xiao, W.-J.; Liu, L.-Q. Tetrahedron Lett. 2018, 59, 1521. [65] Hu, X. Q.; Chen, J. R.; Gao, S.; Feng, B.; Lu, L. Q.; Xiao, W.-J. Chem. Commun. 2013, 49, 7905. [66] (a) Yang, Q.-Q.; Xiao, C.; Lu, L.-Q.; An, J.; Tan, F.; Li, B.-J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 9137. (b) Yang, Q.-Q.; Wang, Q.; An, J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem.-Eur. J. 2013, 19, 8401. (c) Liu, Y.-Y.; Yu, X.-Y.; Chen, J.-R.; Qiao, M.-M.; Qi, X.; Shi, D.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 9527. (d) Yang, Q.-Q.; Xiao, W.-J. Eur. J. Org. Chem. 2017, 2017, 233. (e) Zheng, Y.; Tu, L.; Li, N.; Huang, R.; Feng, T.; Sun, H.; Li, Z.; Liu, J. Adv. Synth. Catal. 2019, 361, 44. (f) Hua, T.-B.; Yang, Q.-Q.; Zou, Y.-Q. Molecules 2019, 24, 3191. (g) Hua, T.-B.; Chao, F.; Wang, L.; Yan, C.-Y.; Xiao, C.; Yang, Q.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2020, 362, 2615. [67] Chen, L.; Yang, G. M.; Wang, J.; Jia, Q. F.; Wei, J.; Du, Z. Y. RSC Adv. 2015, 5, 76696. [68] Zhi, Y.; Zhao, K.; Shu, T.; Enders, D. Synthesis 2016, 48, 238. [69] Xu, J. F.; Yuan, S. R.; Peng, J. Y.; Miao, M. Z.; Chen, Z. K.; Ren, H. J. Org. Biomol. Chem. 2017, 15, 7513. [70] Zheng, P. F.; Zeng, R.; Jiang, K.; Li, H. W.; Ye, Y.; Mu, C.; Shuai, L.; Ouyang, Q.; Chen, Y. C. Org. Lett. 2019, 21, 10052. [71] Soeta, T.; Tamura, K.; Ukaji, Y. Org. Lett. 2012, 14, 1226. [72] Soeta, T.; Tamura, K.; Fujinami, S.; Ukaji, Y. Org. Biomol. Chem. 2013, 11, 2168. [73] Lariveé, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52. [74] Zhao, Z.-Q.; Zhao, X.-L.; Shi, M.; Zhao, M.-X. J. Org. Chem. 2019, 84, 14487. [75] Fang, L.; Chen, L. S.; Yu, J. J.; Wang, L. M. Eur. J. Org. Chem. 2015, 2015, 1910. [76] Hashimoto, T.; Omote, M.; Maruoka, K. Angew. Chem., Int. Ed. 2011, 50, 8952. [77] Hua, Z. R.; Fang, L.; Wu, S. Y.; Wang, L. M. Eur. J. Org. Chem. 2016, 2016, 4953. [78] Li, D.; Yang, D. X.; Wang, L. Q.; Liu, X. H.; Wang, K. Z.; Wang, J.; Wang, P. X.; Liu, Y. Y.; Zhu, H. Y.; Wang, R. Chem.-Eur. J. 2017, 23, 6974. [79] Zhang, D.; Liu, J. W.; Kang, Z. H.; Qiu, H.; Hu, W. H. Org. Biomol. Chem. 2019, 17, 9844. [80] Hua, T.-B.; Xiao, C.; Yang, Q.-Q.; Chen, J.-R. Chin. Chem. Lett. 2020, 31, 311. [81] Zhou, Z.-L.; Liu, Y.-L.; Song, J.-L.; Deng, C.-L. Synthesis 2016, 48, 2057. [82] Sakai, T.; Soeta, T.; Inomata, K.; Ukaji, Y. Bull. Chem. Soc. Jpn. 2012, 85, 231. [83] (a) Lu, L.-Q.; Li, T.-R.; Wang, Q.; Xiao, W.-J. Chem. Soc. Rev. 2017, 46, 4135. (b) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Rev. 2015, 115, 5301. [84] Soeta, T.; Ohgai, T.; Sakai, T.; Fujinami, S.; Ukaji, Y. Org. Lett. 2014, 16, 4854. |
[1] | 张晓轲, 郑相如, 王朝永. 偶氮次甲基亚胺与氮杂二烯前体的[4+3]环加成反应构建功能化四氮杂䓬衍生物[J]. 有机化学, 2023, 43(9): 3180-3187. |
[2] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[3] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[4] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[5] | 梁俊秀, 刘亚洲, 王阿木, 吴彦超, 马小锋, 李惠静. 基于原位形成的氮杂邻亚甲基苯醌和卤代萘酚的分子间[4+1]螺环化/去芳香化反应[J]. 有机化学, 2023, 43(11): 3888-3899. |
[6] | 张维露, 陈绍维, 沈晓. 镍催化苯并硅杂环丁烷与酰基硅烷的[4+2]环化反应[J]. 有机化学, 2023, 43(10): 3635-3643. |
[7] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[8] | 王君姣, 吕瑜瑜, 尚永伟, 崔振丽, 王克虎, 黄丹凤, 胡雨来. α-羟基酮类化合物参与的反应研究进展[J]. 有机化学, 2022, 42(8): 2300-2321. |
[9] | 安逸, 张放, 蔡志华, 杜广芬. 碱催化α-氰基-β-甲基烯基(杂)芳基酮苯增环反应合成多取代苯[J]. 有机化学, 2021, 41(9): 3625-3632. |
[10] | 孙佳兵, 苗涛, 李品华, 王磊. t-BuOK促进的还原脱砜/脱氢反应: 选择性合成2-取代的1,3-共轭二烯及其应用[J]. 有机化学, 2021, 41(8): 3144-3156. |
[11] | 孙忠文, 张聪聪, 陈丽君, 谢惠定, 柳波, 刘丹丹. 三氟乙基酮亚胺参与的催化不对称反应研究进展[J]. 有机化学, 2021, 41(5): 1789-1803. |
[12] | 闫强, 范荣, 刘斌斌, 苏帅松, 王勃, 姚团利, 谭嘉靖. 苯炔参与的去芳构化反应研究进展[J]. 有机化学, 2021, 41(2): 455-470. |
[13] | 邹宁, 覃小婷, 王治新, 石维敏, 莫冬亮. α,β-不饱和硝酮的合成及其应用的研究进展[J]. 有机化学, 2021, 41(12): 4535-4553. |
[14] | 张建涛, 周鹏, 肖朵朵, 刘卫兵. 1,3,5-三嗪烷合成含氮杂环的反应研究进展[J]. 有机化学, 2021, 41(11): 4154-4166. |
[15] | 仝明慧, 张欣宇, 王也铭, 王自坤. 碘叶立德的化学反应研究进展[J]. 有机化学, 2021, 41(1): 126-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||