有机化学 ›› 2021, Vol. 41 ›› Issue (5): 1949-1956.DOI: 10.6023/cjoc202101021 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
收稿日期:
2021-01-15
修回日期:
2021-02-01
发布日期:
2021-02-26
通讯作者:
陈宜峰
基金资助:
Yangyang Weng1, Jingping Qu1, Yifeng Chen1,*()
Received:
2021-01-15
Revised:
2021-02-01
Published:
2021-02-26
Contact:
Yifeng Chen
About author:
Supported by:
文章分享
利用大位阻芳基异腈作为羰基源, 发展了钯催化下的烯丙基羰基化Negishi偶联反应. 大位阻芳基异腈的使用可以有效地避免羰基化反应过程中β-H消除副反应的发生, 可专一区域选择性、高立体选择性地实现β,γ-不饱和酮的精准合成, 解决了传统一氧化碳化学中长期存在的区域选择性较差的难题. 有机锌试剂作为含碳原子亲核试剂, 反应拥有条件温和, 底物适用性广等优点.
翁扬扬, 曲景平, 陈宜峰. 钯催化大位阻芳基异腈作为羰基源的烯丙基羰基化Negishi偶联反应[J]. 有机化学, 2021, 41(5): 1949-1956.
Yangyang Weng, Jingping Qu, Yifeng Chen. Palladium-Catalyzed Allylic Carbonylative Negishi Cross-Coupling Reactions with Sterically Bulky Aromatic Isocyanides[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1949-1956.
[1] |
(a) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2009, 48, 4114.
doi: 10.1002/anie.v48:23 |
(b) Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. Chem 2019, 5, 526.
doi: 10.1016/j.chempr.2018.11.006 |
|
(c) Grigg, R.; Mutton, S. P. Tetrahedron 2010, 66, 5515.
doi: 10.1016/j.tet.2010.03.090 |
|
(d) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.-F. ACS Catal. 2014, 4, 2977.
doi: 10.1021/cs500922x |
|
(e) Yin, Z.; Wang, Z.; Wu, X.-F. Chin. J. Org. Chem. 2019, 39, 573. (in Chinese).
doi: 10.6023/cjoc201809004 |
|
(尹志平, 王泽超, 吴小锋, 有机化学, 2019, 39, 573.)
doi: 10.6023/cjoc201809004 |
|
(f) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
doi: 10.1021/acscatal.5b00050 |
|
(g) Jiang, T.; Liu, H.; Zhang, H.; Huang, H. Chin. J. Chem. 2020, 38, 635.
doi: 10.1002/cjoc.v38.6 |
|
[2] |
(a) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
doi: 10.1021/ja00832a024 |
(b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
doi: 10.1021/jo00937a004 |
|
(c) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
doi: 10.1021/jo00937a003 |
|
[3] |
Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
doi: 10.1039/c1cs15109f |
[4] |
(a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
doi: 10.1016/S0040-4039(00)71674-1 |
(b) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292.
doi: 10.1021/ja00782a080 |
|
(c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
doi: 10.1021/cr9409804 |
|
(d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
doi: 10.1021/cr020027w |
|
[5] |
(a) Weaver, J. D.; Recio, III,A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
doi: 10.1021/cr1002744 |
(b) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
doi: 10.1039/C5CS00144G |
|
(c) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
doi: 10.1021/acs.chemrev.8b00506 |
|
(d) Huang, H.-M.; Bellotti, P.; Glorius, F. Chem. Soc. Rev. 2020, 49, 6186.
doi: 10.1039/D0CS00262C |
|
[6] |
(a) Tsuji, J.; Sato, K.; Okumoto, H.; J. Org. Chem. 1984, 49, 1341.
doi: 10.1021/jo00182a005 |
(b) Kiji, J.; Okano, T.; Higashimae, Y.; Fukui, Y. Bull. Chem. Soc. Jpn. 1996, 69, 1029.
doi: 10.1246/bcsj.69.1029 |
|
(c) Takeuchi, R.; Akiyama, Y. J. Organomet. Chem. 2002, 651, 137.
doi: 10.1016/S0022-328X(02)01370-0 |
|
(d) Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58, 1538.
doi: 10.1021/jo00058a040 |
|
(e) Murahashi, S. I.; Imada, Y.; Taniguchi, Y.; Higashiura, S.-Y. Tetrahedron Lett. 1988, 29, 4945.
doi: 10.1016/S0040-4039(00)80648-6 |
|
(f) Mitsudo, T.-A.; Suzuki, N.; Kondo, T.; Watanabe, Y. J. Org. Chem. 1994, 59, 7759.
doi: 10.1021/jo00104a036 |
|
(g) Liu, Q.; Wu, L.; Jiao, H.; Fang, X.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 8064.
doi: 10.1002/anie.v52.31 |
|
(h) Murahashi, S.-I.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58, 1538.
doi: 10.1021/jo00058a040 |
|
[7] |
(a) Knifton, J. F. J. Organomet. Chem. 1980, 188, 223.
doi: 10.1016/S0022-328X(00)82815-6 |
(b) Murahashi, S.-I.; Imada, Y.; Nishimura, K. Tetrahedron, 1994, 50, 453.
doi: 10.1016/S0040-4020(01)80767-5 |
|
(c) Murahashi, S.-I.; Imada, Y. Chem. Lett. 1985,1477.
|
|
[8] |
(a) Okano, T.; Okabe, N.; Kiji, J. Bull. Chem. Soc. Jpn. 1992, 65, 2589.
doi: 10.1246/bcsj.65.2589 |
(b) Naigre, R.; Alper, H. J. Mol. Catal. A: Chem. 1996, 111, 11.
doi: 10.1016/1381-1169(96)00068-4 |
|
(c) Xiao, W.-J.; Alper, H. J. Org. Chem. 1998, 63, 7939.
doi: 10.1021/jo9812328 |
|
(d) Matsuzaka, H.; Hiroe, Y.; Iwasaki, M.; Ishii, Y.; Koyasu, Y.; Hidai, M. J. Org. Chem. 1988, 53, 3832.
doi: 10.1021/jo00251a031 |
|
(e) Iwasaki, M.; Kobayashi, Y.; Li, J. P.; Matsuzaka, H.; Ishii, Y.; Hidai, M. J. Org. Chem. 1991, 56, 1922.
doi: 10.1021/jo00005a046 |
|
[9] |
(a) Houk, K. N. Chem. Rev. 1976, 76, 1.
doi: 10.1021/cr60299a001 pmid: 11673979 |
(b) Ranu, B. C.; Majee, A.; Das, A. R. Tetrahedron Lett. 1996, 37, 1109.
doi: 10.1016/0040-4039(95)02317-8 pmid: 11673979 |
|
(c) Hoffmann, H. R. M.; Tsushima, T. J. Am. Chem. Soc. 1977, 99, 6008.
doi: 10.1021/ja00460a028 pmid: 11673979 |
|
(d) Obora, Y.; Ogawa, Y.; Imai, Y.; Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001, 123, 10489.
pmid: 11673979 |
|
(e) Yasuda, S.; Ishii, T.; Takemoto, S.; Haruki, H.; Ohmiya, H. Angew. Chem. Int. Ed. 2018, 57, 2938.
doi: 10.1002/anie.201712811 pmid: 11673979 |
|
(f) Haruki, H.; Yasuda, S.; Nagao, K.; Ohmiya, H. Chem.-Eur. J. 2019, 25, 724.
pmid: 11673979 |
|
(g) Takemoto, S.; Ishii, T.; Yasuda, S.; Ohmiya, H. Bull. Chem. Soc. Jpn. 2019, 92, 937.
doi: 10.1246/bcsj.20190012 pmid: 11673979 |
|
[10] |
(a) Sheffy, F.; Stille, J. J. Am. Chem. Soc. 1983, 105, 7173.
doi: 10.1021/ja00362a027 |
(b) Sheffy, F.; Godschalx, J.; Stille, J. J. Am. Chem. Soc. 1984, 106, 4833.
doi: 10.1021/ja00329a032 |
|
[11] |
(a) Tamaru, Y.; Yasui, K.; Takanabe, H.; Tanaka, S.; Fugami, K. Angew. Chem. Int. Ed. 1992, 31, 645.
doi: 10.1002/(ISSN)1521-3773 |
(b) Yasui, K.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1995, 60, 1365.
doi: 10.1021/jo00110a047 |
|
[12] |
(a) Boyarskiy, V. P.; Bokach, N. A.; Luzyanin, K. V.; Kukushkin, V. Y. Chem. Rev. 2015, 115, 2698.
doi: 10.1021/cr500380d |
(b) Qiu, G.; Ding, Q.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.
doi: 10.1039/c3cs35507a |
|
(c) Lang, S. Chem. Soc. Rev. 2013, 42, 4867.
doi: 10.1039/c3cs60022j |
|
(d) Vlaar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Angew. Chem. Int. Ed. 2013, 52, 7084.
doi: 10.1002/anie.201300942 |
|
(e) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168.
doi: 10.1002/(ISSN)1521-3773 |
|
(f) Otsuka, S.; Nogi, K.; Yorimitsu, H. Angew. Chem. Int. Ed. 2018, 57, 6653.
doi: 10.1002/anie.v57.22 |
|
(g) Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
doi: 10.1039/C6CS00384B |
|
(h) Wang, H.; Xu, B. Chin. J. Org. Chem. 2015, 35, 588. (in Chinese).
doi: 10.6023/cjoc201411035 |
|
(王浩, 许斌, 有机化学, 2015, 35, 588.)
doi: 10.6023/cjoc201411035 |
|
For selected example of Pd-catalyzed reactions with isocyanide as CO surrogate, see:.
|
|
(i) Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett. 2011, 13, 1028.
doi: 10.1021/ol103081y |
|
(j) Tang, T.; Fei, X.-D.; Ge, Z.-Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2013, 78, 3170.
doi: 10.1021/jo4001096 |
|
(k) Jiang, X.; Wang, J.-M.; Zhang, Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. Org. Lett. 2014, 16, 3492.
doi: 10.1021/ol5014262 |
|
(l) Fei, X.-D.; Ge, Z.-Y.; Tang, T.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2012, 77, 10321.
doi: 10.1021/jo302004u |
|
(m) Hu, W.; Li, M.; Jiang, G.; Wu, W.; Jiang, H. Org. Lett. 2018, 20, 3500.
doi: 10.1021/acs.orglett.8b01277 |
|
(n) Li, Z.; Zheng, J.; Hu, W.; Li, J.; Wu, W.; Jiang, H. Org. Chem. Front. 2017, 4, 1363.
doi: 10.1039/C7QO00082K |
|
(o) Hu, W.; Zheng, J.; Li, J.; Liu, B.; Wu, W.; Liu, H.; Jiang, H. J. Org. Chem. 2016, 81, 12451.
doi: 10.1021/acs.joc.6b02227 |
|
[13] |
Weng, Y.; Zhang, C.; Tang, Z.; Shrestha, M.; Huang, W.; Qu, J.; Chen, Y. Nat. Commun. 2020, 11, 392.
doi: 10.1038/s41467-020-14320-1 |
[14] |
Wang, C.; Wu, L.; Xu, W.; He, F.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 6954.
doi: 10.1021/acs.orglett.0c02515 |
[15] |
(a) Huang, W.; Wang, Y.; Weng, Y.; Shrestha, M.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 3245.
doi: 10.1021/acs.orglett.0c01022 |
(b) Wang, Y.; Huang, W.; Wang, C.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 4245.
doi: 10.1021/acs.orglett.0c01284 |
|
[16] |
Qiu, G.; Mamboury, M.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 15377.
doi: 10.1002/anie.v55.49 |
[17] |
Ma, W.; Xue, D.; Yu, T.; Wang, C.; Xiao, J.-L. Chem. Commun. 2015, 51, 8797.
doi: 10.1039/C5CC02094H |
[18] |
Krasovskiy, A.; Knochel, P. Synthesis 2006,890.
|
[19] |
Spoehrle, S. S. M.; West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2017, 139, 11895.
doi: 10.1021/jacs.7b05619 |
[20] |
Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Angew. Chem. Int. Ed. 2011, 50, 8656.
doi: 10.1002/anie.201103581 |
[21] |
Liu, L.; Bao, X.; Xiao, H.; Li, J.; Ye, F.; Wang, C.; Cai, Q.; Fan, S. J. Org. Chem. 2019, 84, 423.
doi: 10.1021/acs.joc.8b02432 |
[22] |
Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, T.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.
doi: 10.1021/jo034638f |
[23] |
Delvos, L. B.; Vyas, D. J.; Oestreich, M. Angew. Chem. Int. Ed. 2013, 52, 4650.
doi: 10.1002/anie.201300648 |
[24] |
Shintani, R.; Fujie, R.; Takeda, M.; Nozaki, K. Angew. Chem. Int. Ed. 2014, 53, 6546.
doi: 10.1002/anie.v53.25 |
[25] |
Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597.
pmid: 15387557 |
[26] |
Wakeham, R. J.; Baillie, R. A.; Patrick, B. O.; Legzdins, P.; Rosenfeld, D. C. Organometallics 2017, 36, 39.
doi: 10.1021/acs.organomet.6b00739 |
[27] |
Obora, Y.; Ogawa, Y.; Imai, Y.; Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001, 123, 10489.
pmid: 11673979 |
[28] |
Zhuo, L.-G.; Yao, Z.-K.; Yu, Z.-X. Org. Lett. 2013, 15, 4634.
doi: 10.1021/ol401607c |
[1] | 孟宪强, 杨艺, 梁万洁, 王靖涛, 张荣葵, 刘会. 钯催化联烯胺区域选择性芳基酚氧化反应[J]. 有机化学, 2024, 44(1): 224-231. |
[2] | 王兢睿, 冯永奎, 王能中, 黄年玉, 姚辉. 钯催化立体选择性合成硝基烷类β-碳糖苷[J]. 有机化学, 2023, 43(9): 3216-3225. |
[3] | 席敏, 段超, 迟捷, 付甜, 苏小龙, 王宏社. 腐殖酸作用下Strecker反应快速高效合成α-氨基腈[J]. 有机化学, 2023, 43(9): 3312-3318. |
[4] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[5] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[6] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[7] | 安大列, 包志鹏, 吴小锋. 含碳氟类底物参与的羰基化反应研究进展[J]. 有机化学, 2023, 43(7): 2304-2312. |
[8] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[9] | 向勋, 何照林, 董秀琴. 钯和手性磷酸协同催化高效构建手性分子的研究进展[J]. 有机化学, 2023, 43(3): 791-808. |
[10] | 张建涛, 邓雅文, 莫诺琳, 陈莲芬. 自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展[J]. 有机化学, 2023, 43(2): 426-435. |
[11] | 孙美娇, 谭晶, 谭玉, 彭进松, 陈春霞. 钯催化3-(2-氨基嘧啶-4-基)吲哚2位C—H键芳基化反应的研究[J]. 有机化学, 2023, 43(11): 3945-3959. |
[12] | 郭广青, 练仲. 硅基羧酸在有机合成中的应用进展[J]. 有机化学, 2023, 43(10): 3580-3589. |
[13] | 熊威, 石斌, 姜烜, 陆良秋, 肖文精. 配体调控钯催化乙烯基环状碳酰胺和异氰酸酯的差异性转化[J]. 有机化学, 2023, 43(1): 265-273. |
[14] | 刘浩阳, 孙爽爽, 马献力, 陈艳艳, 徐燕丽. 可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物[J]. 有机化学, 2022, 42(9): 2867-2876. |
[15] | 高秋珊, 李蒙, 伍婉卿. 过渡金属催化的异腈插入反应研究进展[J]. 有机化学, 2022, 42(9): 2659-2681. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||