有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2700-2706.DOI: 10.6023/cjoc202104053 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
收稿日期:
2021-04-26
修回日期:
2021-05-10
发布日期:
2021-05-25
通讯作者:
万结平
基金资助:
Xixi Zheng, Yunyun Liu, Jie-Ping Wan()
Received:
2021-04-26
Revised:
2021-05-10
Published:
2021-05-25
Contact:
Jie-Ping Wan
Supported by:
文章分享
通过使用简单的Et3N催化容易获得的β-取代NH-烯胺酯和对甲苯磺酰叠氮的反应, 高效实现了全取代的1,2,3-三氮唑的合成. 在该方法中, 水用作反应的唯一介质, 以高底物适用性和中等至优秀的产率合成了1,2,3-三氮唑产物. 对照实验表明, 使用稳定的NH-烯胺作为底物, 可能是通过NH基团与水之间的氢键作用实现水介导反应的关键因素. 研究还发现, 在相同条件下经由相应的N-烷基烯胺酯和对甲苯磺酰叠氮的反应, 选择性地生成N-烷基磺酰胺.
郑茜茜, 刘云云, 万结平. 烯胺调控下和对甲苯磺酰叠氮在纯水介质中的无金属环化反应合成1,2,3-三氮唑[J]. 有机化学, 2021, 41(7): 2700-2706.
Xixi Zheng, Yunyun Liu, Jie-Ping Wan. Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2700-2706.
Entry | Solvent | Base | T/℃ | Yieldb/% |
---|---|---|---|---|
1 | H2O | Et3N | 80 | 80 |
2 | H2O | — | 80 | Trace |
3 | H2O | K2CO3 | 80 | 39 |
4 | H2O | Cs2CO3 | 80 | 50 |
5 | H2O | DBU | 80 | 46 |
6 | H2O | Et3N | 60 | 76 |
7 | H2O | Et3N | 70 | 92 |
8 | H2O | Et3N | 90 | 78 |
9 | EtOH | Et3N | 70 | 46 |
10 | DMSO | Et3N | 70 | 78 |
11 | DMF | Et3N | 70 | 70 |
12 | Toluene | Et3N | 70 | Trace |
13c | H2O | Et3N | 70 | 92 |
14c,d | H2O | Et3N | 70 | 91 |
15c,e | H2O | Et3N | 70 | 91 |
Entry | Solvent | Base | T/℃ | Yieldb/% |
---|---|---|---|---|
1 | H2O | Et3N | 80 | 80 |
2 | H2O | — | 80 | Trace |
3 | H2O | K2CO3 | 80 | 39 |
4 | H2O | Cs2CO3 | 80 | 50 |
5 | H2O | DBU | 80 | 46 |
6 | H2O | Et3N | 60 | 76 |
7 | H2O | Et3N | 70 | 92 |
8 | H2O | Et3N | 90 | 78 |
9 | EtOH | Et3N | 70 | 46 |
10 | DMSO | Et3N | 70 | 78 |
11 | DMF | Et3N | 70 | 70 |
12 | Toluene | Et3N | 70 | Trace |
13c | H2O | Et3N | 70 | 92 |
14c,d | H2O | Et3N | 70 | 91 |
15c,e | H2O | Et3N | 70 | 91 |
[1] |
(a) Lipshutz,B. H.; Ghorai, S.; Cortes-Clerget, M. Chem.-Eur. J. 2018, 24,6672.
doi: 10.1002/chem.v24.26 |
(b) Gawande,M. B.; Bonifácio,V. D.B.; Luque, R.; Branco,P. S.; Varma,R. S. Chem. Soc. Rev. 2013, 42,5522.
doi: 10.1039/c3cs60025d |
|
(c) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39,301.
doi: 10.1039/B918763B |
|
[2] |
(a) Butler,R. N.; Goyne,A. G. Chem. Rev. 2010, 110,6302.
doi: 10.1021/cr100162c |
(b) Chanda, A.; Fokin,V. V. Chem. Rev. 2009, 109,725.
doi: 10.1021/cr800448q |
|
(c) Sun, K.; Lv,Q. -Y.; Chen,X. -L.; Qu,L. -B.; Yu, B. Green Chem. 2021, 23,232.
doi: 10.1039/D0GC03447A |
|
(d) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39,3353 (in Chinese).
doi: 10.6023/cjoc201907014 |
|
( 陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学. 2019, 39,3353.)
|
|
[3] |
(a) Li, Y.; Huang, Y.; Gui, Y.; Sun, J.; Li, J.; Zha, Z.; Wang, Z. Org. Lett. 2017, 19,6416.
doi: 10.1021/acs.orglett.7b03299 |
(b) Zhang, F.; Tian, Y.; Li, G.; Qu, J. J. Org. Chem. 2015, 80,1107.
doi: 10.1021/jo502636d |
|
(c) Álvarez, M.; Gava, R.; Rodríguez,M. R.; Rull,S. G.; Pérez,P. J. ACS Catal. 2017, 7,3707.
doi: 10.1021/acscatal.6b03669 |
|
(d) Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Nie, F.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80,3258.
doi: 10.1021/jo502642n |
|
(e) Tang, S.; Li, L.; Ren, X.; Li, J.; Yang, G.; Li, H.; Yuan, B. Green Chem. 2019, 21,2899.
doi: 10.1039/C8GC03815E |
|
[4] |
(a) Peng, S.; Song,Y. -X.; He,J. -Y.; Tang,S. -S.; Tan,J. -X.; Cao, Z.; Lin,Y. -W.; He,W. -M. Chin. Chem. Lett. 2019, 30,2287.
doi: 10.1016/j.cclet.2019.08.002 |
(b) Wu, Y.; Lin,Y. -W.; He,W. -M. Chin. Chem. Lett. 2020, 31,2999.
doi: 10.1016/j.cclet.2020.09.005 |
|
(c) Shukla, P.; Asati, A.; Bhardiya,S. R.; Singh, M.; Rai,V. K.; Rai, A. J. Org. Chem. 2020, 85,15552.
doi: 10.1021/acs.joc.0c02219 |
|
[5] |
(a) Tang, L.; Yang, Y.; Wen, L.; Yang, X.; Wang, Z. Green Chem. 2016, 18,1224.
doi: 10.1039/C5GC02755A |
(b) Lin, Y.; Lu, G.; Wang, G.; Yi, W. J. Org. Chem. 2017, 82,382.
doi: 10.1021/acs.joc.6b02459 |
|
[6] |
(a) Chen, L.; Huang, R.; Li, K.; Yun,X. -H.; Yang,C. -L.; Yan,S. -J. Green Chem. 2020, 22,6943.
doi: 10.1039/D0GC02460K |
(b) Husain,A. A.; Bisht, K. J. Org. Chem. 2020, 85,9928.
doi: 10.1021/acs.joc.0c01150 |
|
(c) Köhling, S.; Exner,M. P.; Nojoumi, S.; Schiller, J.; Budisa, N.; Rademann, J. Angew. Chem. Int. Ed. 2016, 55,15510.
doi: 10.1002/anie.201607228 |
|
(d) Yang, J.; Mei, F.; Fu, S.; Gu, Y. Green Chem. 2018, 20,1367.
doi: 10.1039/C7GC03644B |
|
(e) Reddy,G. T.; Kumar, G.; Reddy,N. C.G. Adv. Synth. Catal. 2018, 360,995.
doi: 10.1002/adsc.v360.5 |
|
(f) Yang, L.; Wu, Y.; Yang, Y.; Wen, C.; Wan,J. -P. Beilstein J. Org. Chem. 2018, 14,2348.
doi: 10.3762/bjoc.14.210 |
|
(g) Chen, X.; Xia, F.; Zhao, Y.; Ma, J.; Zhang, D.; Yang, L. Sun, P. Chin. J. Chem. 2020, 38,1239.
doi: 10.1002/cjoc.v38.11 |
|
(h) Sun, G.; He, Y.; Tian, C.; Borzov, M.; Hu, Q.; Nie, W. Acta Chem. Sinica 2019, 77,166 (in Chinese).
|
|
( 孙国峰, 何云清, 田冲, Borzov Maxim, 胡启山, 聂万丽, 化学学报, 2019, 77,166.)
|
|
[7] |
(a) Meldal, M.; Tomøe,C. W. Chem. Rev. 2008, 108,2952.
doi: 10.1021/cr0783479 |
(b) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113,4905.
doi: 10.1021/cr200409f |
|
(c) Jiang, Y.; Sun, R.; Tang,X. -Y.; Shi, M. Chem.-Eur. J. 2016, 22,17910.
doi: 10.1002/chem.201601703 |
|
[8] |
For selected reviews, see: (a) Opsomer, T.; Dehaen,, W. Chem. Commun. 2021, 57,1568.
doi: 10.1039/D0CC06654K |
(b) Ramasastry,S. S.V. Angew. Chem. Int. Ed. 2014, 53,14310.
doi: 10.1002/anie.201409410 |
|
(c) Lima,C. G.S.; Ali, A.; Berkel,S. S.; Westermann, B.; Paixão,M. W. Chem. Commun. 2015, 51,10784.
doi: 10.1039/C5CC04114G |
|
[9] |
(a) Ramachary,D. B.; Shashank,A. B.; Karthik, S. Angew. Chem. Int. Ed. 2014, 53,10420.
doi: 10.1002/anie.201406721 |
(b) Thomas, J.; John, J.; Parekh, N.; Dehaen, W. Angew. Chem. Int. Ed. 2014, 53,10155.
doi: 10.1002/anie.201403453 |
|
(c) Zhang, D.; Fan, Y.; Yan, Z.; Nie, Y.; Xiong, X.; Gao, L. Green Chem. 2019, 21,4211.
doi: 10.1039/C9GC01129C |
|
(d) Reddy,G. S.; Reddy,L. M.; Kumar,A. S.; Ramachary,D. B. J. Org. Chem. 2020, 85,15488.
doi: 10.1021/acs.joc.0c02247 |
|
[10] |
(a) Belkheira, M.; Abed,D. E.; Pons,J. -M.; Bressy, C. Chem.-Eur. J. 2011, 17,12917.
doi: 10.1002/chem.v17.46 |
(b) Ramachary,D. B.; Krishna,P. M.; Gujral, J.; Reddy,G. S. Chem.-Eur. J. 2015, 21,16775.
doi: 10.1002/chem.v21.47 |
|
(c) Guo, N.; Liu, X.; Xu, H.; Zhou, X.; Zhao, H. Org. Biomol. Chem. 2019, 17,6148.
doi: 10.1039/C9OB01156K |
|
(d) Danence,L. J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Chem.-Eur. J. 2011, 17,3584.
doi: 10.1002/chem.v17.13 |
|
(e) Nelsona, R.; Kesternicha, V.; Pérez-Fehrmanna, M.; Jaldina, S.; Marcourtb, L.; Christen, P. J. Chem. Res. 2016, 40,453.
doi: 10.3184/174751916X14656662266973 |
|
[11] |
(a) Li, W.; Wang, J. Angew. Chem. Int. Ed. 2014, 53,14186.
doi: 10.1002/anie.v53.51 |
(b) Ramachary,D. B.; Ramakumar, K.; Narayana,V. V. Chem.-Eur. J. 2008, 14,9143.
doi: 10.1002/chem.v14:30 |
|
(c) Das, J.; Dey, S.; Pathak, T. J. Org. Chem. 2019, 84,15437.
doi: 10.1021/acs.joc.9b02443 |
|
[12] |
(a) Agard,N. J.; Prescher,J. A.; Bertozzi,C. R. J. Am. Chem. Soc. 2004, 126,15046.
doi: 10.1021/ja044996f |
(b) Kwok,S. W.; Fotsing,J. R.; Fraser,R. J.; Rodionov,V. O.; Fokin,V. V. Org. Lett. 2010, 12,4217.
doi: 10.1021/ol101568d |
|
[13] |
(a) Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. Angew. Chem. Int. Ed. 2013, 52,13265.
doi: 10.1002/anie.201307499 |
(b) Wan,J. -P.; Cao, S.; Liu, Y. Org. Lett. 2016, 18,6034.
doi: 10.1021/acs.orglett.6b02975 |
|
(c) Deng, L.; Cao, X.; Liu, Y.; Wan,J. -P. J. Org. Chem. 2019, 84,14179.
doi: 10.1021/acs.joc.9b01817 |
|
(d) De Nino, A.; Algieri, V.; Talllarida, M.A.; Constanzo, P.; Pedron, M.; Tejero, T.; Merino, P.; Maiuolo, L. Eur. J. Org. Chem. 2019, 33,5725.
|
|
(e) Huang, W.; Zhu, C.; Li, M.; Yu, Y.; Wu, W.; Tu, Z.; Jiang, H. Adv. Synth. Catal. 2018, 360,3117.
doi: 10.1002/adsc.201800487 |
|
(f) Thomas, J.; Goyvaerts, V.; Liekens, S.; Dehaen, W. Chem.-Eur. J. 2016, 22,9966.
|
|
(g) Cao, S.; Liu, Y.; Hu, C.; Wen, C.; Wan,J. -P. ChemCatChem 2018, 10,5007.
doi: 10.1002/cctc.v10.21 |
|
[14] |
(a) Shu,W. -M.; Zhang,X. -F.; Zhang,X. -X.; Li, M.; Wang,A. -J.; Wu,A. -X. J. Org. Chem. 2019, 84,14919.
doi: 10.1021/acs.joc.9b02250 |
(b) Berkel,S. S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann,L. A.; Abbas, M.; Westermann, B. Angew. Chem. Int. Ed. 2012, 51,5343.
doi: 10.1002/anie.201108850 |
|
[15] |
For reviews and selected examples, see: (a) Wan,J. -P.; Hu, D.; Liu, Y.; Sheng,, S. ChemCatChem 2015, 7,901.
doi: 10.1002/cctc.201500001 |
(b) Chen, Z.; Gao, G.; Song, J.; Ren, H. Chin. J. Chem. 2017, 35,1797.
doi: 10.1002/cjoc.v35.12 |
|
(c) Shang,Z. -H.; Zhang,Z. -X.; Weng,W. -Z.; Wang,Y. -F.; Cheng,T. -W.; Zhang,Q. -Y.; Song,L. -Q.; Shao,T. -Q.; Liu,K. -X.; Zhu,Y. -P. Adv. Synth. Catal. 2020, 363,490.
doi: 10.1002/adsc.v363.2 |
|
(d) Wan,J. -P.; Cao, S.; Liu, Y. J. Org. Chem. 2015, 80,9028.
doi: 10.1021/acs.joc.5b01121 |
|
(e) Panda, S.; Maity, P.; Manna, D. Org. Lett. 2017, 19,1534.
doi: 10.1021/acs.orglett.7b00313 |
|
(f) Cai,Z. -J.; Lu,X. -M.; Zi, Y.; Yang, C.; Shen,L. -J.; Li, J.; Wang,S. -Y.; Ji,S. -J. Org. Lett. 2014, 16,5108.
doi: 10.1021/ol502431b |
|
(g) Wu, P.; He, Y.; Wang, H.; Zhou,Y. -G.; Yu, Z. Org. Lett. 2020, 22,310.
doi: 10.1021/acs.orglett.9b04335 |
|
(h) Chen, Z.; Yan, Q.; Liu, Z.; Zhang, Y. Chem.-Eur. J. 2014, 20,17635.
doi: 10.1002/chem.201405057 |
|
[16] |
(a) Guo, Y.; Wang, G.; Wei, L.; Wan,J. -P. J. Org. Chem. 2019, 84,2984.
doi: 10.1021/acs.joc.8b02897 |
(b) Zheng, X.; Wan,J. -P. Adv. Synth. Catal. 2019, 361,5690.
doi: 10.1002/adsc.v361.24 |
|
(c) Gan, L.; Wei, L.; Wan,J. -P. ChemistrySelect 2020, 5,7822.
doi: 10.1002/slct.v5.26 |
|
(d) Fu, L.; Cao, X.; Wan,J. -P. Chin. J. Chem. 2020, 38,254.
doi: 10.1002/cjoc.v38.3 |
|
[17] |
For a few recent examples, see (a) Gan, L.; Yu, Y.; Liu, L.; Wan,J. -P. J. Org. Chem. 2021, 86,1231.
doi: 10.1021/acs.joc.0c02431 |
(b) Fu, L.; Xu, Z.; Wan,J. -P.; Liu, Y. Org. Lett. 2020, 24,9518.
|
|
(c) Hu, D.; Yang, L.; Wan,J. -P. Green Chem. 2020, 22,6773.
doi: 10.1039/D0GC02806A |
|
(d) Klintworth, R.; de Koning,C. B.; Opatz, T.; Michael,J. P. J. Org. Chem. 2019, 84,11025.
doi: 10.1021/acs.joc.9b01604 |
|
(e) Chen, J.; Guo, P.; Zhang, J.; Rong, J.; Sun, W.; Jiang, Y.; Loh,T. -P. Angew. Chem. Int. Ed. 2019, 58,12674.
doi: 10.1002/anie.v58.36 |
|
(f) Gao, Y.; Liu, Y.; Wan,J. -P. J. Org. Chem. 2019, 84,2243.
doi: 10.1021/acs.joc.8b02981 |
|
(g) Shang, Z.; Chen, Q.; Xing, L.; Zhang, Y.; Wait, L.; Du, Y. Adv. Synth. Catal. 2019, 361,4926.
doi: 10.1002/adsc.v361.21 |
|
(h) Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F. J. Org. Chem. 2017, 82,13268.
doi: 10.1021/acs.joc.7b02391 |
|
(i) Gu, F.; Yao, W. Chin. J. Org. Chem. 2020, 40,4384 (in Chinese).
doi: 10.6023/cjoc202000091 |
|
( 谷枫, 姚伟军, 有机化学, 2020, 40,4384.)
|
|
(j) Wang, G.; Guo, Y.; Wan,J. -P. Chin. J. Org. Chem. 2020, 40,645 (in Chinese).
doi: 10.6023/cjoc201912018 |
|
( 王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40,645.)
|
|
(k) Yu, Q.; Liu, Y.; Wan,J. -P. Chin. Chem. Lett. 2021,DOI: 10.1016/j.cclet.2021.04.037
doi: 10.1016/j.cclet.2021.04.037 |
|
[18] |
(a) Nitin,A. R.; Varun K.; Vipin,A. N. Monatsh. Chem. 2010, 141,1329.
doi: 10.1007/s00706-010-0399-9 |
(b) Nishiwaki, N.; Nishimoto, T.; Tamura, M.; Ariga, M. Synlett 2006,1437.
|
|
[19] |
Tang, X.; Huang, L.; Qi, C.; Wu, X.; Wu, W.; Jiang, H. Chem. Commun. 2013, 49,6102.
doi: 10.1039/c3cc41249k |
[1] | 张剑, 梁万洁, 杨艺, 闫法超, 刘会. 联烯胺化合物的区域选择性双官能团化[J]. 有机化学, 2024, 44(2): 335-348. |
[2] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[3] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[4] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[5] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[6] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[7] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[8] | 黄丽珠, 刘云云, 万结平. 烯胺酮平台构建转化生物质产品Cyrene为增值化合物[J]. 有机化学, 2023, 43(6): 2096-2103. |
[9] | 刘育园, 雷雅钦, 杨文, 赵万祥. 钴催化烯胺远程硼氢化[J]. 有机化学, 2023, 43(5): 1761-1771. |
[10] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[11] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[12] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[13] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[14] | 刘宁, 爨晓丹, 李慧, 段希焱. 烯胺酮α-官能团化反应的研究进展[J]. 有机化学, 2023, 43(2): 602-621. |
[15] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 882
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 934
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||