有机化学 ›› 2021, Vol. 41 ›› Issue (10): 4028-4038.DOI: 10.6023/cjoc202104057 上一篇 下一篇
所属专题: 南开大学化学学科创立100周年; 热点论文虚拟合集
研究论文
黄音君a, 李金山a, 李珅a,*(), 马军安a,b,*()
收稿日期:
2021-04-27
修回日期:
2021-06-24
发布日期:
2021-07-05
通讯作者:
李珅, 马军安
基金资助:
Yinjun Huanga, Jinshan Lia, Shen Lia(), Junan Maa,b()
Received:
2021-04-27
Revised:
2021-06-24
Published:
2021-07-05
Contact:
Shen Li, Junan Ma
Supported by:
文章分享
在氧气氛围中, 以2-芳基吲哚和N-乙酰基烯胺为原料, 实现了一锅法快速构建三环吲哚啉稠环骨架化合物. 该方法具有原料易得、操作简便、区域和非对映选择性较高以及环境友好等特点. 机理研究表明, 反应首先发生氧化去芳构化, 随后与烯酰胺进行[3+2]环化反应.
黄音君, 李金山, 李珅, 马军安. 钴催化2-芳基吲哚氧化去芳构化及与烯酰胺[3+2]环化反应[J]. 有机化学, 2021, 41(10): 4028-4038.
Yinjun Huang, Jinshan Li, Shen Li, Junan Ma. Cobalt-Catalyzed Aerobic Oxidative Dearomatization of 2-Aryl Indoles and in situ [3+2] Annulation with Enamides[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 4028-4038.
Entry | Catalyst | Solvent | Time/h | Yieldb/% | drc |
---|---|---|---|---|---|
1 | Co(salophen) | CH2Cl2 | 48 | 72 | 4∶1 |
2 | Co(TPP) | CH2Cl2 | 24d | 72 | 4∶1 |
3 | Co(TPP) | CHCl3 | 6e | 82 | 4∶1 |
4 | Co(TPP) | CCl4 | 12f | 64 | 4∶1 |
5 | Co(TPP) | DCE | 48 | 28 | 4∶1 |
6 | Co(TPP) | Et2O | 48 | 10 | 2∶1 |
7 | Co(TPP) | THF | 48 | 34 | 5∶1 |
8 | Co(TPP) | Toluene | 48 | 25 | 4∶1 |
Entry | Catalyst | Solvent | Time/h | Yieldb/% | drc |
---|---|---|---|---|---|
1 | Co(salophen) | CH2Cl2 | 48 | 72 | 4∶1 |
2 | Co(TPP) | CH2Cl2 | 24d | 72 | 4∶1 |
3 | Co(TPP) | CHCl3 | 6e | 82 | 4∶1 |
4 | Co(TPP) | CCl4 | 12f | 64 | 4∶1 |
5 | Co(TPP) | DCE | 48 | 28 | 4∶1 |
6 | Co(TPP) | Et2O | 48 | 10 | 2∶1 |
7 | Co(TPP) | THF | 48 | 34 | 5∶1 |
8 | Co(TPP) | Toluene | 48 | 25 | 4∶1 |
[1] |
(a) Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids: Structure, Isolation, Synthesis and Biology, Wiley-VCH, Weinheim, 2008.
pmid: 25255204 |
(b) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151.
doi: 10.1021/ar050175j pmid: 25255204 |
|
(c) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M. Chem.-Eur. J. 2011, 17, 1388.
doi: 10.1002/chem.201001451 pmid: 25255204 |
|
(d) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
|
[2] |
For reviews, see: (a) Roche, S. P.; Porco Jr., J. A. Angew. Chem. Int. Ed. 2011, 50, 4068.
doi: 10.1002/anie.v50.18 pmid: 30839047 |
(b) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem. Int. Ed. 2012, 51, 12662.
doi: 10.1002/anie.201204822 pmid: 30839047 |
|
(c) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314.
doi: 10.1021/jo4017953 pmid: 30839047 |
|
(d) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.
doi: 10.1039/C4OB00371C pmid: 30839047 |
|
(e) Roche, S. P.; Youte Tendoung, J.-J.; Tréguier, B. Tetrahedron 2015, 71, 3549.
doi: 10.1016/j.tet.2014.06.054 pmid: 30839047 |
|
(f) Zheng, C.; You, S.-L. Chem 2016, 1, 830.
doi: 10.1016/j.chempr.2016.11.005 pmid: 30839047 |
|
(g) Bariwal, J.; Voskressensky, L. G.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3831.
doi: 10.1039/C7CS00508C pmid: 30839047 |
|
(h) Wang, Y.; Xie, F.; Lin, B.; Cheng, M.; Liu, Y. Chem.-Eur. J. 2018, 24, 14302.
doi: 10.1002/chem.201800775 pmid: 30839047 |
|
(i) Norwood IV, V. M.; Huigens III, R. W. ChemBioChem 2019, 20, 2273.
doi: 10.1002/cbic.v20.18 pmid: 30839047 |
|
(j) Zeidan, N.; Lautens, M. Synthesis 2019, 51, 4137.
doi: 10.1055/s-0037-1611918 pmid: 30839047 |
|
(k) Zheng, C.; You, S.-L. Nat. Prod. Rep. 2019, 36, 1589.
doi: 10.1039/c8np00098k pmid: 30839047 |
|
(l) Zhu, M.; Zhang, X.; You, S. Chem. J. Chin. Univ. 2020, 41, 1407. (in Chinese)
pmid: 30839047 |
|
朱敏, 张霄, 游书力, 高等学校化学学报, 2020, 41, 1407.)
pmid: 30839047 |
|
For selected recent examples, see: (m) Huang, L.; Cai, Y.; Zhang, H.-J.; Zheng, C.; Dai, L.-X.; You, S.-L. CCS Chem. 2019, 1, 106.
pmid: 30839047 |
|
(n) Yang, P.; Xu, R.-Q.; Zheng, C.; You, S.-L. Chin. J. Chem. 2020, 38, 235.
doi: 10.1002/cjoc.v38.3 pmid: 30839047 |
|
(o) Yuan, W.-C.; Zhou, X.-J.; Zhao, J.-Q.; Chen, Y.-Z.; You, Y.; Wang, Z.-H. Org. Lett. 2020, 22, 7088.
doi: 10.1021/acs.orglett.0c02350 pmid: 30839047 |
|
(p) Gao, X.; Yuan, Y.; Xie, X.; Zhang, Z. Chem. Commun. 2020, 56, 14047.
doi: 10.1039/D0CC05672C pmid: 30839047 |
|
(q) Zhu, M.; Huang, X.-L.; Xu, H.; Zhang, X.; Zheng, C.; You, S.-L. CCS Chem. 2021, 3, 652.
doi: 10.31635/ccschem.020.202000254 pmid: 30839047 |
|
(r) Wang, R.; Xu, L.; Lu, Y.; Jiang, B.; Hao, W. Chin. J. Org. Chem. 2021, 41, 1582.
doi: 10.6023/cjoc202101003 pmid: 30839047 |
|
[3] |
For review, see: Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
doi: 10.1021/ar500167f |
[4] |
For review, see: Denizot, N.; Tomakinian, T.; Beaud, R.; Kouklovsky, C.; Vincent, G. Tetrahedron Lett. 2015, 56, 4413.
doi: 10.1016/j.tetlet.2015.05.078 |
[5] |
For review, see: Liang, X.-W.; Zheng, C.; You, S.-L. Chem.-Eur. J. 2016, 22, 11918.
doi: 10.1002/chem.201600885 |
[6] |
For review, see: Huang, G.; Yin, B. Adv. Synth. Catal. 2019, 361, 405.
doi: 10.1002/adsc.v361.3 |
[7] |
For selected examples, see: (a) Schkeryantz, J. M.; Woo, J. C. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 7025.
doi: 10.1021/ja00131a035 pmid: 12733890 |
(b) Sunazuka, T.; Hirose, T.; Shirahata, T.; Harigaya, Y.; Hayashi, M.; Komiyama, K.; Ōmura, S.; Smith, A. B. J. Am. Chem. Soc. 2000, 122, 2122.
doi: 10.1021/ja9938074 pmid: 12733890 |
|
(c) Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 5628.
pmid: 12733890 |
|
(d) May, J. P.; Fournier, P.; Pellicelli, J.; Patrick, B. O.; Perrin, D. M. J. Org. Chem. 2005, 70, 8424.
doi: 10.1021/jo051105t pmid: 12733890 |
|
(e) May, J. P.; Patrick, B. O.; Perrin, D. M. Synlett 2006, 3403.
pmid: 12733890 |
|
(f) González-Vera, J. A.; Teresa García-López, M.; Herranz, R. Tetrahedron 2007, 63, 9229.
doi: 10.1016/j.tet.2007.06.053 pmid: 12733890 |
|
(g) Tu, D.; Ma, L.; Tong, X.; Deng, X.; Xia, C. Org. Lett. 2012, 14, 4830.
doi: 10.1021/ol302158h pmid: 12733890 |
|
(h) Zhao, L.; May, J. P.; Huang, J.; Perrin, D. M. Org. Lett. 2012, 14, 90.
doi: 10.1021/ol202880y pmid: 12733890 |
|
(i) Han, L.; Liu, C.; Zhang, W.; Shi, X.-X.; You, S.-L. Chem. Commun. 2014, 50, 1231.
doi: 10.1039/C3CC47921H pmid: 12733890 |
|
(j) Peng, Q.-L.; Luo, S.-P.; Xia, X.-E.; Liu, L.-X.; Huang, P.-Q. Chem. Commun. 2014, 50, 1986.
doi: 10.1039/c3cc48833k pmid: 12733890 |
|
(k) Xu, C.-P.; Luo, S.-P.; Wang, A.-E.; Huang, P.-Q. Org. Biomol. Chem. 2014, 12, 2859.
doi: 10.1039/c4ob00314d pmid: 12733890 |
|
(l) Han, L.; Zhang, W.; Shi, X.-X.; You, S.-L. Adv. Synth. Catal. 2015, 357, 3064.
doi: 10.1002/adsc.201500557 pmid: 12733890 |
|
(m) Liu, Z.-J.; Huang, P.-Q. J. Org. Chem. 2019, 84, 5627.
doi: 10.1021/acs.joc.9b00573 pmid: 12733890 |
|
(n) Sawano, T.; Yamamoto, H. ACS Catal. 2019, 9, 3384.
doi: 10.1021/acscatal.9b00840 pmid: 12733890 |
|
[8] |
(a) Sang, P.; Xie, Y.; Zou, J.; Zhang, Y. Adv. Synth. Catal. 2012, 354, 1873.
doi: 10.1002/adsc.v354.10 |
(b) Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem. Int. Ed. 2016, 55, 307.
doi: 10.1002/anie.201508076 |
|
(c) Yamashita, M.; Nishizono, Y.; Himekawa, S.; Iida, A. Tetrahedron 2016, 72, 4123.
doi: 10.1016/j.tet.2016.05.054 |
|
[9] |
For selected examples, see: (a) Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1993, 34, 2953.
pmid: 31157355 |
(b) Yamashita, M.; Iida, A. Tetrahedron Lett. 2014, 55, 2991.
doi: 10.1016/j.tetlet.2014.03.128 pmid: 31157355 |
|
(c) Lin, F.; Chen, Y.; Wang, B.; Qin, W.; Liu, L. RSC Adv. 2015, 5, 37018.
doi: 10.1039/C5RA04106F pmid: 31157355 |
|
(d) Guchhait, S. K.; Chaudhary, V.; Rana, V. A.; Priyadarshani, G.; Kandekar, S.; Kashyap, M. Org. Lett. 2016, 18, 1534.
doi: 10.1021/acs.orglett.6b00244 pmid: 31157355 |
|
(e) Zhang, C.; Li, S.; Bureš, F.; Lee, R.; Ye, X.; Jiang, Z. ACS Catal. 2016, 6, 6853.
doi: 10.1021/acscatal.6b01969 pmid: 31157355 |
|
(f) Cao, W.-B.; Chu, X.-Q.; Zhou, Y.; Yin, L.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2017, 53, 6601.
doi: 10.1039/C7CC02815F pmid: 31157355 |
|
(g) Deng, Z.; Peng, X.; Huang, P.; Jiang, L.; Ye, D.; Liu, L. Org. Biomol. Chem. 2017, 15, 442.
doi: 10.1039/C6OB02285E pmid: 31157355 |
|
(h) Liu, X.-X.; Luo, X.-L.; Wu, Z.-Y.; Cui, X.-F.; Zhou, X.-Q.; He, Y.-Q.; Huang, G.-S. J. Org. Chem. 2017, 82, 2107.
doi: 10.1021/acs.joc.6b02893 pmid: 31157355 |
|
(i) Cao, W.-B.; Liu, B.-B.; Xu, X.-P.; Ji, S.-J. Org. Chem. Front. 2018, 5, 1194.
doi: 10.1039/C7QO01154G pmid: 31157355 |
|
(j) Guo, S.; Wang, F.; Tao, L.; Zhang, X.; Fan, X. J. Org. Chem. 2018, 83, 3889.
doi: 10.1021/acs.joc.8b00231 pmid: 31157355 |
|
(k) Zhou, X.-Y.; Chen, X.; Wang, L.-G.; Yang, D.; Li, J.-H. Synlett 2018, 29, 835.
doi: 10.1055/s-0036-1591876 pmid: 31157355 |
|
(l) Ding, X.; Dong, C.-L.; Guan, Z.; He, Y.-H. Angew. Chem. Int. Ed. 2019, 58, 118.
doi: 10.1002/anie.201811085 pmid: 31157355 |
|
(m) Jiang, X.; Zhu, B.; Lin, K.; Wang, G.; Su, W.-K.; Yu, C. Org. Biomol. Chem. 2019, 17, 2199.
doi: 10.1039/C8OB03057J pmid: 31157355 |
|
(n) Liu, X.; Yan, X.; Tang, Y.; Jiang, C.-S.; Yu, J.-H.; Wang, K.; Zhang, H. Chem. Commun. 2019, 55, 6535.
doi: 10.1039/C9CC02956G pmid: 31157355 |
|
(o) Liu, X.; Yan, X.; Yu, J.-H.; Tang, Y.-D.; Wang, K.; Zhang, H. Org. Lett. 2019, 21, 5626.
doi: 10.1021/acs.orglett.9b01965 pmid: 31157355 |
|
(p) Patel, O. P. S.; Dhiman, S.; Khan, S.; Shinde, V. N.; Jaspal, S.; Srivathsa, M. R.; Jha, P. N.; Kumar, A. Org. Biomol. Chem. 2019, 17, 5962.
doi: 10.1039/c9ob00797k pmid: 31157355 |
|
(q) Shukla, G.; Dahiya, A.; Alam, T.; Patel, B. K. Asian J. Org. Chem. 2019, 8, 2243.
doi: 10.1002/ajoc.v8.12 pmid: 31157355 |
|
(r) Zhang, L.-L.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. Org. Chem. Front. 2019, 6, 1787.
doi: 10.1039/C9QO00379G pmid: 31157355 |
|
(s) Lu, F.-Y.; Chen, Y.-J.; Chen, Y.; Ding, X.; Guan, Z.; He, Y.-H. Chem. Commun. 2020, 56, 623.
doi: 10.1039/C9CC09178E pmid: 31157355 |
|
[10] |
For reviews, see: (a) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455.
doi: 10.1039/b809319a pmid: 19082143 |
(b) Matsubara, R.; Kobayashi, S. Acc. Chem. Res. 2008, 41, 292.
doi: 10.1021/ar700098d pmid: 19082143 |
|
[11] |
For selected examples, see: (a) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem. Int. Ed. 2008, 47, 4012.
doi: 10.1002/anie.v47:21 |
(b) Zu, L.; Xie, H.; Li, H.; Wang, J.; Yu, X.; Wang, W. Chem.-Eur. J. 2008, 14, 6333.
doi: 10.1002/chem.200800829 |
|
(c) Noole, A.; Borissova, M.; Lopp, M.; Kanger, T. J. Org. Chem. 2011, 76, 1538.
doi: 10.1021/jo200095e |
|
(d) Wan, J.-P.; Loh, C. C. J.; Pan, F.; Enders, D. Chem. Commun. 2012, 48, 10049.
doi: 10.1039/c2cc35644a |
|
(e) Ding, X.-F.; Su, R.-H.; Yang, W.-L.; Deng, W.-P. Adv. Synth. Catal. 2018, 360, 4168.
doi: 10.1002/adsc.v360.21 |
|
[12] |
(a) Qiao, B.; Cao, H.-Q.; Huang, Y.-J.; Zhang, Y.; Nie, J.; Zhang, F.-G.; Ma, J.-A. Chin. J. Chem. 2018, 36, 809.
doi: 10.1002/cjoc.v36.9 pmid: 32223256 |
(b) Feng, F.-F.; Li, J.-S.; Li, S.; Ma, J.-A. Adv. Synth. Catal. 2019, 361, 4222.
doi: 10.1002/adsc.v361.18 pmid: 32223256 |
|
(c) Feng, F.-F.; Li, S.; Cheung, C. W.; Ma, J.-A. Org. Lett. 2019, 21, 8419.
doi: 10.1021/acs.orglett.9b03181 pmid: 32223256 |
|
(d) Cao, H.-Q.; Liu, H.-N.; Liu, Z.-Y.; Qiao, B.-K.; Zhang, F.-G.; Ma, J.-A. Chem.-Eur. J. 2020, 26, 5515.
doi: 10.1002/chem.v26.24 pmid: 32223256 |
|
(e) Zhang, Y.; Li, J.-K.; Zhang, F.-G.; Ma, J.-A. J. Org. Chem. 2020, 85, 5580.
doi: 10.1021/acs.joc.0c00436 pmid: 32223256 |
|
(f) Cao, H.-Q.; Liu, H.-N.; Liu, Z.-Y.; Qiao, B.-K.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2020, 22, 6414.
doi: 10.1021/acs.orglett.0c02229 pmid: 32223256 |
|
[13] |
For reviews, see: Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
doi: 10.1039/c2cs15224j |
[14] |
(a) Dufour-Ricroch, M. N.; Gaudemer, A. Tetrahedron Lett. 1976, 17, 4079.
doi: 10.1016/S0040-4039(00)92580-2 |
(b) Nishinaga, A.; Tomita, H. J. Mol. Catal. 1980, 7, 179.
doi: 10.1016/0304-5102(80)85017-6 |
|
(c) Niederhoffer, E. C.; Timmons, J. H.; Martell, A. E. Chem. Rev. 1984, 84, 137.
doi: 10.1021/cr00060a003 |
|
(d) Bailey, C. L.; Drago, R. S. Coord. Chem. Rev. 1987, 79, 321.
doi: 10.1016/0010-8545(87)80009-7 |
|
[15] |
For preparation of 6, see: Li, J.-S.; Liu, Y.-J.; Zhang, G.-W.; Ma, J.-A. Org. Lett. 2017, 19, 6364.
doi: 10.1021/acs.orglett.7b03213 |
[16] |
(a) Li, P.; Yong, W.; Sheng, R.; Rao, W.; Zhu, X.; Zhang, X. Adv. Synth. Catal. 2019, 361, 201.
doi: 10.1002/adsc.v361.1 |
(b) Reiss, H.; Shalit, H.; Vershinin, V.; More, N. Y.; Forckosh, H.; Pappo, D. J. Org. Chem. 2019, 84, 7950.
doi: 10.1021/acs.joc.9b00822 |
|
[17] |
Lian, X.-L.; Lei, H.; Quan, X.-J.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2013, 49, 8196.
doi: 10.1039/c3cc44215b |
[18] |
Reeves, J. T.; Tan, Z.; Han, Z. S.; Li, G.; Zhang, Y.; Xu, Y.; Reeves, D. C.; Gonnella, N. C.; Ma, S.; Lee, H.; Lu, B. Z.; Senanayake, C. H. Angew. Chem. Int. Ed. 2012, 51, 1400.
doi: 10.1002/anie.201107601 |
[1] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[2] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[3] | 岁丹丹, 岑南楠, 龚若蕖, 陈阳, 陈文博. 无支持电解质条件下连续流电化学合成三氟甲基化氧化吲哚[J]. 有机化学, 2023, 43(9): 3239-3245. |
[4] | 王熠, 张键, 刘飏子, 罗晓燕, 邓卫平. 钯催化不对称[3+4]环加成构建吲哚并环庚烷[J]. 有机化学, 2023, 43(8): 2864-2877. |
[5] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[6] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[7] | 张彦波, 孙萌. 铑催化碳酸亚乙烯酯与吲哚啉C(7)位C—H甲酰甲基化反应[J]. 有机化学, 2023, 43(8): 2905-2912. |
[8] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[9] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[10] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[11] | 孙泽人, 翟冰新, 何光超, 沈慧, 陈琳雅, 张杉, 邹毅, 朱启华, 徐云根. 新型1,2,3-三氮唑类衍生物的合成及抗炎活性研究[J]. 有机化学, 2023, 43(6): 2143-2155. |
[12] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[13] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[14] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[15] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||