有机化学 ›› 2023, Vol. 43 ›› Issue (8): 2864-2877.DOI: 10.6023/cjoc202302017 上一篇 下一篇
研究论文
王熠a, 张键b, 刘飏子b, 罗晓燕a,*(), 邓卫平a,b,*()
收稿日期:
2023-02-25
修回日期:
2023-04-04
发布日期:
2023-04-25
基金资助:
Yi Wanga, Jian Zhangb, Yangzi Liub, Xiaoyan Luoa(), Weiping Denga,b()
Received:
2023-02-25
Revised:
2023-04-04
Published:
2023-04-25
Contact:
*E-mail: Supported by:
文章分享
报道了一种通过钯催化的脱羧方法, 能够以较好的收率、中等至优异的对映选择性, 以及良好的非对映选择性高效地合成吲哚并环庚烷类化合物. 在该方法中, 乙烯基吲哚噁唑酮被钯催化剂活化脱羧形成两性离子中间体, 接着被缺电子双烯所捕获发生不对称[3+4]环加成反应.
王熠, 张键, 刘飏子, 罗晓燕, 邓卫平. 钯催化不对称[3+4]环加成构建吲哚并环庚烷[J]. 有机化学, 2023, 43(8): 2864-2877.
Yi Wang, Jian Zhang, Yangzi Liu, Xiaoyan Luo, Weiping Deng. Palladium-Catalyzed Asymmetric [3+4] Cycloadditions for the Construction of Cyclohepta[b]indoles[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2864-2877.
Entry a | Ligand | Solvent | Yieldb/% | drc | eed/% |
---|---|---|---|---|---|
1 | L1 | DCM | 83 | 10.2∶1 | 23 |
2 | L2 | DCM | 73 | 7.6∶1 | 68 |
3 | L3 | DCM | 93 | 10.1∶1 | 31 |
4 | L4 | DCM | 44 | 2.9∶1 | 12 |
5 | L5 | DCM | 59 | 4.0∶1 | 75 |
6 | L6 | DCM | 76 | 3.5∶1 | 81 |
7 | L7 | DCM | 45 | 3.4∶1 | 88 |
8 | L8 | DCM | 70 | 4.0∶1 | 87 |
9 | L9 | DCM | 73 | 3.3∶1 | 89 |
10 | L10 | DCM | 74 | 5.2∶1 | 95 |
11 | L11 | DCM | 43 | >20∶1 | 68 |
12 | L12 | DCM | 83 | >20∶1 | 67 |
13 | L10 | THF | 36 | 2.8∶1 | 86 |
14 | L10 | PhMe | 30 | 1.1∶1 | 56 |
15 | L10 | CHCl3 | 76 | 5.1∶1 | 94 |
16 | L10 | DCE | 36 | 2.9∶1 | 44 |
Entry a | Ligand | Solvent | Yieldb/% | drc | eed/% |
---|---|---|---|---|---|
1 | L1 | DCM | 83 | 10.2∶1 | 23 |
2 | L2 | DCM | 73 | 7.6∶1 | 68 |
3 | L3 | DCM | 93 | 10.1∶1 | 31 |
4 | L4 | DCM | 44 | 2.9∶1 | 12 |
5 | L5 | DCM | 59 | 4.0∶1 | 75 |
6 | L6 | DCM | 76 | 3.5∶1 | 81 |
7 | L7 | DCM | 45 | 3.4∶1 | 88 |
8 | L8 | DCM | 70 | 4.0∶1 | 87 |
9 | L9 | DCM | 73 | 3.3∶1 | 89 |
10 | L10 | DCM | 74 | 5.2∶1 | 95 |
11 | L11 | DCM | 43 | >20∶1 | 68 |
12 | L12 | DCM | 83 | >20∶1 | 67 |
13 | L10 | THF | 36 | 2.8∶1 | 86 |
14 | L10 | PhMe | 30 | 1.1∶1 | 56 |
15 | L10 | CHCl3 | 76 | 5.1∶1 | 94 |
16 | L10 | DCE | 36 | 2.9∶1 | 44 |
[1] |
(a) Guo, W.; Gomez, J. E.; Cristofol, A.; Xie, J.; Kleij, A. W. Angew. Chem., Int. Ed. 2018, 57, 13735.
doi: 10.1002/anie.v57.42 |
(b) Zuo, L.; Liu, T.; Chang, X.; Guo, W. Molecules 2019, 24, 3930.
doi: 10.3390/molecules24213930 |
|
(c) Trost, B. M.; Jiao, Z.; Liu, Y.; Ming, C.; J. Hung, C.-I. J. Am. Chem. Soc. 2020, 142, 18628.
doi: 10.1021/jacs.0c08348 |
|
(d) Fairuz Binte Sheikh Ismail, S. N.; Yang, B.; Zhao, Y. Org. Lett. 2021, 23, 2884.
doi: 10.1021/acs.orglett.1c00505 |
|
(e) Yan, B.; Guo, W. Synthesis 2022, 54, 1964.
doi: 10.1055/a-1715-7413 |
|
(f) Yuan, S.-P.; Bao, Q.; Sun, T.-J.; Zhao, J.-Q.; Wang, Z.-H.; You, Y.; Zhang, Y.-P.; Zhou, M.-Q.; Yuan, W.-C. Org. Lett. 2022, 24, 8348.
doi: 10.1021/acs.orglett.2c03383 |
|
(g) Dou, P.-H.; Yuan, S.-P.; Chen, Y.; Zhao, J.-Q.; Wang, Z.-H.; You, Y.; Zhang, Y.-P.; Zhou, M.-Q.; Yuan, W.-C. J. Org. Chem. 2022, 87, 6025.
doi: 10.1021/acs.joc.2c00276 |
|
(h) Lu, X.; Xiao, X.; Wan, C.; Wang, Z.; Liu, J. Acta Chim. Sin. 2021, 79, 751.
|
|
(i) Xu, Z.; Malik, A. U.; Shu, M.; Cui, Y. Chin. J. Chem. 2021, 39, 2774.
doi: 10.1002/cjoc.v39.10 |
|
(j) Sun, Y.-L.; Tan, F.-F.; Hu, R.-G.; Hu, C.-H.; Li, Y. Chin. J. Chem. 2022, 40, 1903.
doi: 10.1002/cjoc.v40.16 |
|
[2] |
Tian, F.; Yang, W.-L.; Ni, T.; Zhang, J.; Deng, W.-P. Sci. China Chem. 2021, 64, 34.
doi: 10.1007/s11426-020-9854-3 |
[3] |
Zhao, Z.; Yang, X.-X.; Ran, G.-Y.; Ouyang, Q.; Du, W.; Chen, Y.-C. Org. Lett. 2021, 23, 4791.
doi: 10.1021/acs.orglett.1c01507 pmid: 34105962 |
[4] |
Hang, Q.-Q.; Liu, S.-J.; Yu, L.; Sun, T.-T.; Zhang, Y.-C.; Mei, G.-J.; Shi, F. Chin. J. Chem. 2020, 38, 1612.
doi: 10.1002/cjoc.v38.12 |
[5] |
(a) Joseph, B.; Alagille, D.; Merour, J. Y.; Leonce, S. Chem. Pharm. Bull. 2000, 48, 1872.
doi: 10.1248/cpb.48.1872 |
(b) Kamata, K.; Suetsugu, T.; Yamamoto, Y.; Hayashi, M.; Komiyama, K.; Ishibashi, M. J. Nat. Prod. 2006, 69, 1252.
doi: 10.1021/np060269h |
|
(c) Cao, P.; Liang, Y.; Gao, X.; Li, X.-M.; Song, Z.-Q.; Liang, G. Molecules 2012, 17, 13631.
doi: 10.3390/molecules171113631 |
|
[6] |
(a) Napper, A. D.; Hixon, J.; McDonagh, T.; Keavey, K.; Pons, J. F.; Barker, J.; Yau, W. T.; Amouzegh, P.; Flegg, A.; Hamelin, E.; Thomas, R. J.; Kates, M.; Jones, S.; Navia, M. A.; Saunders, J. O.; DiStefano, P. S.; Curtis, R. J. Med. Chem. 2005, 48, 8045.
doi: 10.1021/jm050522v |
(b) Barf, T.; Lehmann, F.; Hammer, K.; Haile, S.; Axen, E.; Medina, C.; Uppenberg, J.; Svensson, S.; Rondahl, L.; Lundbäck, T. Med. Chem. Lett. 2009, 19, 1745.
doi: 10.1016/j.bmcl.2009.01.084 |
|
(c) Yamuna, E.; Kumar, R. A.; Zeller, M.; Prasad, K. J. R. Eur. J. Med. Chem. 2012, 47, 228.
doi: 10.1016/j.ejmech.2011.10.046 |
|
(d) Liu, B.-Y.; Zhang, C.; Zeng, K.-W.; Li, J.; Guo, X.-Y.; Zhao, M.-B.; Tu, P.-F.; Jiang, Y. Org. Lett. 2015, 17, 4380.
doi: 10.1021/acs.orglett.5b02230 |
|
[7] |
Gierok, J.; Benedix, L.; Hiersemann, M. Eur. J. Org. Chem. 2021, 26, 3748.
|
[8] |
(a) Hamada, N.; Yoshida, Y.; Oishi, S.; Ohno, H. Org. Lett. 2017, 19, 3875.
doi: 10.1021/acs.orglett.7b01759 pmid: 31512880 |
(b) Cheng, B.; Volpin, G.; Morstein, J.; Trauner, D. Org. Lett. 2018, 20, 4358.
doi: 10.1021/acs.orglett.8b01817 pmid: 31512880 |
|
(c) Takeda, T.; Harada, S.; Okabe, A.; Nishida, A. J. Org. Chem. 2018, 83, 11541.
doi: 10.1021/acs.joc.8b01407 pmid: 31512880 |
|
(d) Wang, Z.; Addepalli, Y.; He, Y. Org. Lett. 2018, 20, 644.
doi: 10.1021/acs.orglett.7b03789 pmid: 31512880 |
|
(e) Tymann, D.; Tymann, D. C.; Bednarzick, U.; Iovkova-Berends, L.; Rehbein, J.; Hiersemann, M. Angew. Chem., Int. Ed. 2018, 57, 15553.
doi: 10.1002/anie.v57.47 pmid: 31512880 |
|
(f) Tymann, D.; Bednarzick, U.; Iovkova-Berends, L.; Hiersemann, M. Org. Lett. 2018, 20, 4072.
doi: 10.1021/acs.orglett.8b01629 pmid: 31512880 |
|
(g) Kaufmann, J.; Jäckel, E.; Haak, E. Angew. Chem., Int. Ed. 2018, 57, 5908.
doi: 10.1002/anie.201801846 pmid: 31512880 |
|
(h) Jadhav, A. S.; Pankhade, Y. A.; Anand, R. V. J. Org. Chem. 2018, 83, 8615.
doi: 10.1021/acs.joc.8b00607 pmid: 31512880 |
|
(i) Zeng, Q.; Dong, K.; Huang, J.; Qiu, L.; Xu, X. Org. Biomol. Chem. 2019, 17, 2326.
doi: 10.1039/C9OB00113A pmid: 31512880 |
|
(j) Parker, A. N.; Martin, M. C.; Shenje, R.; France, S. Org. Lett. 2019, 21, 7268.
doi: 10.1021/acs.orglett.9b02498 pmid: 31512880 |
|
(k) Yuan, Y.; Guo, X.; Zhang, X.; Li, B.; Huang, Q. Org. Chem. Front. 2020, 7, 3146.
doi: 10.1039/D0QO00820F pmid: 31512880 |
|
(l) Tymann, D. C.; Benedix, L.; Iovkova, L.; Pallach, R.; Henke, S.; Tymann, D.; Hiersemann, M. Chem.-Eur. J. 2020, 26, 11974.
doi: 10.1002/chem.v26.52 pmid: 31512880 |
|
(m) Mu, X.-P.; Li, Y.-H.; Zheng, N.; Long, J.-Y.; Chen, S.-J.; Liu, B.-Y.; Zhao, C.-B.; Yang, Z. Angew. Chem., Int. Ed. 2021, 60, 11211.
doi: 10.1002/anie.v60.20 pmid: 31512880 |
|
(n) Dhawa, U.; Connon, R.; Oliveira, J. C. A.; Steinbock, R.; Ackermann, L. Org. Lett. 2021, 23, 2760.
doi: 10.1021/acs.orglett.1c00615 pmid: 31512880 |
|
[9] |
(a) Trost, B. M.; Zuo, Z.; Schultz, J. E. Chem.-Eur. J. 2020, 26, 15354.
doi: 10.1002/chem.v26.67 |
(b) Zhao, C.; Khan, L.; Zhang, Y.-J. Chem. Commun. 2020, 56, 12431.
doi: 10.1039/D0CC05640E |
|
(c) Du, J.; Hua, Y.-D.; Jiang, Y.-J.; Huang, S.; Chen, D.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2020, 22, 5375.
doi: 10.1021/acs.orglett.0c01638 |
|
(d) Mao, B.; Liu, H.; Yan, Z.; Xu, Y.; Xu, J.; Wang, W.; Wu, Y.; Guo, H. Angew. Chem., Int. Ed. 2020, 59, 11316.
doi: 10.1002/anie.v59.28 |
|
(e) Guo, J.-M.; Fan, X.-Z.; Wu, H.-H.; Tang, Z.; Bi, X.-F.; Zhang, H.; Cai, L.-Y.; Zhao, H.-W.; Zhong, Q.-D. J. Org. Chem. 2021, 86, 1712.
doi: 10.1021/acs.joc.0c02524 |
|
(f) Gao, Y.; Zhang, X.; Zhang, X.; Miao, Z. Org. Lett. 2021, 23, 2415.
doi: 10.1021/acs.orglett.1c00073 |
|
(g) García-Vázquez, V.; Hoteite, L.; Lakeland, C. P.; Watson, D. W.; Harrity, J. P. A. Org. Lett. 2021, 23, 2811.
doi: 10.1021/acs.orglett.1c00752 |
|
(h) Zuo, L.; Yang, Y.; Guo, W. Org. Lett. 2021, 23, 2013.
doi: 10.1021/acs.orglett.1c00148 |
|
(i) Yang, G.; Ke, Y.-M.; Zhao, Y. Angew. Chem., Int. Ed. 2021, 60, 12775.
doi: 10.1002/anie.v60.23 |
|
(j) Peng, Y.; Huo, X.; Luo, Y.; Wu, L. Angew. Chem., Int. Ed. 2021, 60, 24941.
doi: 10.1002/anie.v60.47 |
|
(k) Wang, D.; Sun, J.; Yan, C.-G. Green Synth. Catal. 2022, 3, 53.
|
|
(l) You, Y.; Li, Q.; Zhang, Y.-P.; Zhao, J.-Q. Wang, Z.-H.; Yuan, W.-C. ChemCatChem 2022, 14, e202101887.
|
|
(m) Xu, B.; Zhang, Z.-M.; Han, J.; Gu, G.; Zhang, J. Chin. J. Chem. 2022, 40, 1407.
doi: 10.1002/cjoc.v40.12 |
|
(n) Zhu, M.; Zhang, X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2022, 55, 2510.
doi: 10.1021/acs.accounts.2c00412 |
|
(o) Zhang, W.; Zhang, P.-C.; Li, Y.-L.; Wu, H.-H.; Zhang, J. J. Am. Chem. Soc. 2022, 144, 19627.
doi: 10.1021/jacs.2c09799 |
|
(p) Zhang, M.-M.; Qu, B.-L.; Shi, B.; Xiao, W.-J.; Lu, L.-Q. Chem. Soc. Rev. 2022, 51, 4146.
doi: 10.1039/D1CS00897H |
|
(q) Wang, B.-C.; Wei, Y.; Xiong, F.-Y.; Qu, B.-L.; Xiao, W.-J.; Lu, L.-Q. Sci. China. Chem. 2022, 65, 2437.
doi: 10.1007/s11426-022-1374-4 |
|
(r) Zhang, J.; Chen, Y.; Wang, Q.; Shen, J.; Liu, Y.-Z.; Deng, W.-P. Chin. J. Org. Chem. 2022, 42, 3051.
doi: 10.6023/cjoc202206028 |
|
(s) Hui, M.; Li, B.; Gong, B.; Yao, H.; Lin, A. Chem. Commun. 2022, 58, 2850.
doi: 10.1039/D1CC07058D |
|
[10] |
(a) Li, Y.; Zhu, C.-Z.; Zhang, J. Eur. J. Org. Chem. 2017, 6609.
|
(b) Xu, G.; Chen, L.; Sun, J. Org. Lett. 2018, 20, 3408.
doi: 10.1021/acs.orglett.8b01353 |
|
(c) Pirovano, V.; Brambilla, E.; Moretti, A.; Rizzato, S.; Abbiati, G.; Nava, D.; Rossi, E. J. Org. Chem. 2020, 85, 3265.
doi: 10.1021/acs.joc.9b03117 |
|
(d) Yang, W.-L.; Li, W.; Yang, Z.-T.; Deng, W.-P. Org. Lett. 2020, 22, 4026.
doi: 10.1021/acs.orglett.0c01406 |
|
[11] |
(a) Zhang, H.-H.; Zhu, Z.-Q.; Fan, T.; Liang, J.; Shi, F. Adv. Synth. Catal. 2016, 358, 1259.
doi: 10.1002/adsc.v358.8 |
(b) Liu, J.; Wang, L.; Wang, X.; Xu, L.; Hao, Z.; Xiao, J. Org. Biomol. Chem. 2016, 14, 11510.
doi: 10.1039/C6OB01953F |
|
(c) Gelis, C.; Levitre, G.; Merad, J.; Retailleau, P.; Neuville, L.; Masson, G. Angew. Chem., Int. Ed. 2018, 57, 12121.
doi: 10.1002/anie.201807069 |
|
(d) Cheng, Q.; Xie, J.-H.; Weng, Y.-C.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 5739.
doi: 10.1002/anie.v58.17 |
|
[12] |
(a) Nguyen, T. V.; Hartmann, J. M.; Enders, D. Synthesis 2013, 45, 845.
doi: 10.1055/s-00000084 pmid: 23153111 |
(b) Ylijoki, K. E. O.; Stryker, J. M. Chem. Rev. 2013, 113, 2244.
doi: 10.1021/cr300087g pmid: 23153111 |
|
(c) Yin, Z.; He, Y.; Chiu, P. Chem. Soc. Rev. 2018, 47, 8881.
doi: 10.1039/C8CS00532J pmid: 23153111 |
|
(d) Pellissier, H. Adv. Synth. Catal. 2018, 360, 1551.
doi: 10.1002/adsc.v360.8 pmid: 23153111 |
|
(e) Gao, K.; Zhang, Y.-G.; Wang, Z.; Ding, H. Chem. Commun. 2019, 55, 1859.
doi: 10.1039/C8CC09077G pmid: 23153111 |
|
[13] |
(a) Liu, Y.-Z.; Wang, Z.; Huang, Z.; Zheng, X.; Yang, W.-L.; Deng, W.-P. Angew. Chem. Int. Ed. 2020, 59, 1238.
doi: 10.1002/anie.201909158 pmid: 33481618 |
(b) Zheng, X.; Sun, H.; Yang, W.-L.; Deng, W.-P. Sci. China. Chem. 2020, 63, 911.
doi: 10.1007/s11426-020-9718-2 pmid: 33481618 |
|
(c) Yang, W.-L.; Huang, Z.; Liu, Y.-Z.; Yu, X.; Deng, W.-P. Chin. J. Chem. 2020, 38, 1571.
doi: 10.1002/cjoc.v38.12 pmid: 33481618 |
|
(d) Yang, W.-L.; Li, W.; Yang, Z.-T.; Deng, W.-P. Org. Lett. 2020, 22, 4026.
doi: 10.1021/acs.orglett.0c01406 pmid: 33481618 |
|
(e) Yang, W.-L.; Ni, T.; Deng, W.-P. Org. Lett. 2021, 23, 588.
doi: 10.1021/acs.orglett.0c04132 pmid: 33481618 |
|
(f) Liu, Y.-Z.; Wang, Z.; Huang, Z.; Yang, W.-L.; Deng, W.-P. Org. Lett. 2021, 23, 948.
doi: 10.1021/acs.orglett.0c04146 pmid: 33481618 |
|
(g) Yang, W.-L.; Shen, J.-H.; Zhao, Z.-H.; Wang, Z.; Deng, W.-P. Org. Chem. Front. 2022, 9, 4685.
doi: 10.1039/D2QO00646D pmid: 33481618 |
|
(h) Tan, W.; Zhang, J.-Y.; Gao, C.-H.; Shi, F. Sci. China. Chem. 2023, 66, DOI: 10.1007/s11426-022-1471-2.
doi: 10.1007/s11426-022-1471-2 pmid: 33481618 |
|
[14] |
Gu, B.-Q.; Yang, W.-L.; Wu, S.-X.; Wang, Y.-B.; Deng, W.-P. Org. Chem. Front. 2018, 5, 3430.
doi: 10.1039/C8QO01042K |
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 于士航, 刘嘉威, 安碧玉, 边庆花, 王敏, 钟江春. 黑腹尼虎天牛接触性信息素的不对称合成[J]. 有机化学, 2024, 44(1): 301-308. |
[4] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[5] | 秦浩, 侯传金, 梁丁化, 何心伟, 李玲, 胡向平. 手性P,N,N-配体/钯催化的不对称烯丙基取代反应[J]. 有机化学, 2024, 44(1): 282-290. |
[6] | 王化坤, 任晓龙, 宣宜宁. 卤盐催化的α,β-环氧羧酸酯与异氰酸酯[3+2]环加成反应研究[J]. 有机化学, 2024, 44(1): 251-258. |
[7] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[8] | 李梦竹, 孟博莹, 兰文捷, 傅滨. 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024, 44(1): 195-203. |
[9] | 王文芳. 过渡金属催化不对称C—H硼化反应研究进展[J]. 有机化学, 2023, 43(9): 3146-3166. |
[10] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[11] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[12] | 马虎, 黄丹凤, 王克虎, 唐朵朵, 冯杨, 任园园, 王君娇, 胡雨来. 3-(三氟甲基)吡唑类化合物的合成[J]. 有机化学, 2023, 43(9): 3257-3267. |
[13] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[14] | 周章涛, 王杨, 程冰心, 叶伟平. [RuCl(p-cymene)-(S)-BINAP]Cl催化不对称合成反式-3-氨基-双环[2.2.2]辛烷-2-甲酸乙酯[J]. 有机化学, 2023, 43(8): 2961-2967. |
[15] | 丁俊, 史啸坤, 郝宇, 白贺元, 张书宇. 银催化的β,γ-不饱和酰胺的不对称γ-胺化反应[J]. 有机化学, 2023, 43(8): 2946-2952. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||