有机化学 ›› 2022, Vol. 42 ›› Issue (10): 3129-3142.DOI: 10.6023/cjoc202208024 上一篇 下一篇
所属专题: 不对称催化专辑
综述与进展
收稿日期:
2022-08-19
修回日期:
2022-10-11
发布日期:
2022-11-02
通讯作者:
黄有
基金资助:
Hongxia Ren, Mengmeng Ma, You Huang()
Received:
2022-08-19
Revised:
2022-10-11
Published:
2022-11-02
Contact:
You Huang
About author:
Supported by:
文章分享
手性氮杂环是一类重要的有机分子, 这类骨架广泛存在于药物、农药以及许多具有生物活性的天然产物分子中, 手性含氮杂环的合成是有机合成化学中的重要研究领域, 有机催化反应是合成氮杂环的重要方法, 在这些方法中, 手性有机膦催化的氮杂环的合成被证明是一个实用且强大的方法. 对近年来手性膦催化的氮杂环的合成反应进行了综述, 并对该领域的发展方向进行了展望.
任红霞, 马萌萌, 黄有. 手性膦催化的氮杂环合成研究进展[J]. 有机化学, 2022, 42(10): 3129-3142.
Hongxia Ren, Mengmeng Ma, You Huang. Progress in Synthesis of Nitrogen Heterocycles Catalyzed by Chiral Phosphine[J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3129-3142.
[1] |
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
[2] |
Das, P.; Delost, M. D.; Qureshi, M. H.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2019, 62, 4265.
doi: 10.1021/acs.jmedchem.8b01610 |
[3] |
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
[4] |
Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
doi: 10.1021/ar000253x |
[5] |
Ye, L.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
doi: 10.1039/b717758e |
[6] |
Fan, Y.; Kwon, O. Chem. Commun. 2013, 49, 11588.
doi: 10.1039/c3cc47368f |
[7] |
Xie, P.; Huang, Y. Eur. J. Org. Chem. 2013, 2013, 6213.
doi: 10.1002/ejoc.201300469 |
[8] |
Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
doi: 10.1039/C5OB00865D |
[9] |
Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
doi: 10.1021/acs.chemrev.8b00081 |
[10] |
Ni, H.; Chan, W. L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
doi: 10.1021/acs.chemrev.8b00261 |
[11] |
Li, E.; Huang, Y. Chem. Commun. 2020, 56, 680.
doi: 10.1039/C9CC08241G |
[12] |
Chen, S.; Salo, E.; Wheeler, K.; Kerrigan, N. Org. Lett. 2012, 14, 1784.
doi: 10.1021/ol3003783 pmid: 22409456 |
[13] |
Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
doi: 10.1021/jo00114a048 |
[14] |
Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461.
doi: 10.1016/S0040-4039(97)00656-4 |
[15] |
Jean, L.; Marinetti, A. Tetrahedron Lett. 2006, 47, 2141.
doi: 10.1016/j.tetlet.2006.01.122 |
[16] |
Scherer, A.; Gladysz, J. A. Tetrahedron Lett. 2006, 47, 6335.
doi: 10.1016/j.tetlet.2006.07.005 |
[17] |
Fleury-Bregeot, N.; Jean, L.; Retailleau, P.; Marinetti, A. Tetrahedron Lett. 2007, 63, 11920.
doi: 10.1016/j.tet.2007.09.022 |
[18] |
Pinto, N.; Fleury-Brégeot, N.; Marinetti, A. Eur. J. Org. Chem. 2009, 2009, 146.
doi: 10.1002/ejoc.200800598 |
[19] |
Fang, Y.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660.
doi: 10.1021/ja801344w |
[20] |
Takizawa, S.; Inoue, N.; Hirata, S.; Sasai, H. Angew. Chem., Int. Ed. 2010, 49, 9725.
doi: 10.1002/anie.201004547 |
[21] |
Andrews, I. P.; Kwon, O. Chem. Sci. 2012, 3, 2510.
pmid: 22798981 |
[22] |
Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2012, 51, 767.
doi: 10.1002/anie.201106672 |
[23] |
Yu, Z.; Jin, Z.; Duan, M.; Bai, R.; Lu, Y.; Lan, Y. J. Org. Chem. 2018, 83, 9729.
doi: 10.1021/acs.joc.8b01259 |
[24] |
Cai, L.; Zhang, K.; Kwon, O. J. Am. Chem. Soc. 2016, 138, 3298.
doi: 10.1021/jacs.6b00567 |
[25] |
Lundgren, R. J.; Wilsily, A.; Marion, N.; Ma, C.; Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 2525.
doi: 10.1002/anie.201208957 |
[26] |
Wang, Y. Q.; Zhang, Y.; Dong, H.; Zhang, J.; Zhao, J. Eur. J. Org. Chem. 2013, 2013, 3764.
doi: 10.1002/ejoc.201201756 |
[27] |
Yu, H.; Zhang, L.; Yang, Z.; Li, Z.; Zhao, Y.; Xiao, Y.; Guo, H. J. Org. Chem. 2013, 78, 8427.
doi: 10.1021/jo401107v |
[28] |
Henry, C.; Xu, Q.; Fan, Y.; Martin, T.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890.
doi: 10.1021/ja505592h |
[29] |
Kramer, S.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 3803.
doi: 10.1021/jacs.5b01944 pmid: 25780940 |
[30] |
Lee, S.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 4587.
doi: 10.1021/jacs.5b01985 |
[31] |
Han, X.; Chan, W.-L.; Yao, W.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2016, 55, 6492.
doi: 10.1002/anie.201600453 |
[32] |
Sankar, M.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. RSC Adv. 2016, 6, 56537.
doi: 10.1039/C6RA12387B |
[33] |
Sankar, M.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. Angew. Chem., Int. Ed. 2016, 55, 9709.
doi: 10.1002/anie.201603936 |
[34] |
Li, E.; Jin, H.; Jia, P.; Dong, X.; Huang, Y. Angew. Chem., Int. Ed. 2016, 55, 11591.
doi: 10.1002/anie.201605189 |
[35] |
Jin, H.; Zhang, Q.; Li, E.; Jia, P.; Li, N.; Huang, Y. Org. Biomol. Chem. 2017, 15, 7097.
doi: 10.1039/C7OB01820G |
[36] |
Xing, J.; Lei, Y.; Gao, Y. N.; Shi, M. Org. Lett. 2017, 19, 2382.
doi: 10.1021/acs.orglett.7b00910 |
[37] |
Ni, C.; Chen, J.; Zhang, Y.; Hou, Y.; Wang, D.; Tong, X.; Zhu, S. F.; Zhou, Q. Org. Lett. 2017, 19, 3668.
doi: 10.1021/acs.orglett.7b01717 |
[38] |
Li, H.; Luo, J.; Li, B.; Yi, X.; He, Z. Org. Lett. 2017, 19, 5637.
doi: 10.1021/acs.orglett.7b02800 |
[39] |
Kitagaki, S.; Nakamura, K.; Kawabata, C.; Ishikawa, A.; Takenaga, N.; Yoshida, K. Org. Biomol. Chem. 2018, 16, 1770.
doi: 10.1039/c8ob00248g pmid: 29464253 |
[40] |
Cheng, Y.; Han, Y.; Li, P. Org. Lett. 2017, 19, 4774.
doi: 10.1021/acs.orglett.7b02144 pmid: 28846432 |
[41] |
Cong, T.; Wang, H.; Li, X.; Wu, H.; Zhang, J. Chem. Commun. 2019, 55, 9176.
doi: 10.1039/C9CC04357H |
[42] |
Wang, C.; Chen, Y.; Li, J.; Zhou, L.; Wang, B.; Xiao, Y.; Guo, H. Org. Lett. 2019, 21, 7519.
doi: 10.1021/acs.orglett.9b02800 |
[43] |
Manzano, R.; Romaniega, A.; Prieto, L.; Díaz, E.; Reyes, E.; Uria, U.; Carrillo, L.; Vicario, J. L. Org. Lett. 2020, 22, 4721.
doi: 10.1021/acs.orglett.0c01523 pmid: 32464065 |
[44] |
Dai, Z.; Jin, Z. J.; Su, W.; Zeng, W.; Liu, Z.; Chen, M.; Zhou, Q. Org. Lett. 2020, 22, 7008.
doi: 10.1021/acs.orglett.0c02558 |
[45] |
Zhou, L.; Zhang, X.; Wang, Q.; Liu, M.; Wang, W.; Wu, Y.; Chen, L.; Guo, H. Org. Lett. 2021, 23, 9173.
doi: 10.1021/acs.orglett.1c03483 |
[46] |
Zhu, X.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716.
doi: 10.1021/ja0344009 |
[47] |
Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234.
doi: 10.1021/ja053277d |
[48] |
Xiao, H.; Chai, Z.; Wang, H.; Wang, X.; Cao, D.; Liu, W.; Lu, Y.; Yang, Y.; Zhao, G. Chem.-Eur. J. 2011, 17, 10562.
doi: 10.1002/chem.201100850 pmid: 21853481 |
[49] |
Cowen, B.; Miller, S. J. Am. Chem. Soc. 2007, 129, 10988.
doi: 10.1021/ja0734243 |
[50] |
Han, X.; Wang, Y.; Zhong, F.; Lu, Y. J. Am. Chem. Soc. 2011, 133, 1726.
doi: 10.1021/ja1106282 |
[51] |
Shi, Z.; Tong, Q.; Leong, W.; Zhong, G. Chem.-Eur. J. 2012, 18, 9802.
doi: 10.1002/chem.201201318 |
[52] |
Shi, Z.; Yu, P.; Loh, T.; Zhong, G. Angew. Chem., Int. Ed. 2012, 51, 7825.
doi: 10.1002/anie.201203316 |
[53] |
Jin, Z.; Yang, R.; Tiwari, B.; Ganguly, R.; Chi, Y. Org. Lett. 2012, 14, 3226.
doi: 10.1021/ol3013588 |
[54] |
Zhang, X.; Chen, G.; Dong, X.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2013, 355, 3351.
doi: 10.1002/adsc.201300828 |
[55] |
Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Asian J. Org. Chem. 2014, 3, 412.
doi: 10.1002/ajoc.201300244 |
[56] |
Yu, H.; Zhang, L.; Li, Z.; Liu, H.; Wang, B.; Xiao, Y.; Guo, H. Tetrahedron 2014, 70, 340.
doi: 10.1016/j.tet.2013.11.063 |
[57] |
Zhang, L.; Liu, H.; Qiao, G.; Hou, Z.; Liu, Y.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2015, 137, 4316.
doi: 10.1021/jacs.5b01138 pmid: 25799312 |
[58] |
Zhou, L.; Yuan, C.; Zhang, C.; Zhang, L.; Gao, Z.; Wang, C.; Liu, H.; Wu, Y.; Guo, H. Adv. Synth. Catal. 2017, 359, 2316.
doi: 10.1002/adsc.201601434 |
[59] |
Wang, Z.; Xu, H.; Su, Q.; Hu, P.; Shao, P.; He, Y.; Lu, Y. Org. Lett. 2017, 19, 3111.
doi: 10.1021/acs.orglett.7b01221 |
[60] |
Zhang, X.; Gan, K.; Liu, X.; Deng, Y.; Wang, F.; Yu, K.; Zhang, J.; Fan, C. Org. Lett. 2017, 19, 3207.
doi: 10.1021/acs.orglett.7b01331 |
[61] |
Zhang, Q.; Jin, H.; Feng, J.; Zhu, Y.; Jia, P.; Wu, C.; Huang, Y. Org. Lett. 2019, 21, 1407.
doi: 10.1021/acs.orglett.9b00130 |
[62] |
Wang, X.; Lu, M.; Su, Q.; Zhou, M.; Addepalli, Y.; Yao, W.; Wang, Z.; Lu, Y. Chem.-Asian J. 2019, 14, 3409.
doi: 10.1002/asia.20190110410.1002/asia.201901104 |
[63] |
Yuan, C.; Zhou, L.; Xia, M.; Sun, Z.; Wang, D.; Guo, H. Org. Lett. 2016, 18, 5644.
doi: 10.1021/acs.orglett.6b02885 |
[64] |
Ni, H.; Tang, X.; Zheng, W.; Yao, W.; Ullah, N.; Lu, Y. Angew. Chem., Int. Ed. 2017, 56, 14222.
doi: 10.1002/anie.201707183 |
[1] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[2] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[3] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[4] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[5] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[6] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[7] | 景科, 张攀科, 徐森苗. 1,4-氮硼杂芳环在有机和过渡金属催化中的应用[J]. 有机化学, 2023, 43(5): 1742-1750. |
[8] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[9] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[10] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[11] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[12] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[13] | 张雨杉, 桓臻, 杨金东, 程津培. 氮杂环磷氢试剂的氢转移活性研究进展[J]. 有机化学, 2023, 43(11): 3806-3825. |
[14] | 南宁, 吴双, 秦景灏, 李金恒. 基于硅烷化启动的环化反应研究进展[J]. 有机化学, 2023, 43(10): 3414-3453. |
[15] | 桑田, 贾帆, 何静, 李春天, 刘岩, 刘平. I2催化β-酮腈与1H-吡唑-5-胺的环化反应[J]. 有机化学, 2023, 43(1): 195-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||