有机化学 ›› 2023, Vol. 43 ›› Issue (6): 1899-1933.DOI: 10.6023/cjoc202210017 上一篇 下一篇
综述与进展
徐光利a,*(), 许静a, 徐海东a, 崔香a, 舒兴中b
收稿日期:
2022-10-17
修回日期:
2022-11-29
发布日期:
2023-01-11
基金资助:
Guangli Xua,*(), Jing Xua, Haidong Xua, Xiang Cuia, Xingzhong Shub
Received:
2022-10-17
Revised:
2022-11-29
Published:
2023-01-11
Contact:
E-mail: Supported by:
文章分享
1,3-共轭二烯是许多天然产物和药物的关键结构单元. 由于共轭烯烃具有特殊的化学性质, 它们在有机合成和材料科学中起着核心作用. 目前, 1,3-共轭二烯的合成主要是通过过渡金属催化的方法实现, 通过该方法科研工作者构建了一系列1,3-二烯骨架, 丰富了共轭二烯类化合物的结构多样性, 同时也扩展了二烯化合物的应用范围. 以过渡金属催化剂的种类不同为主线, 分类对1,3-二烯的合成进行了综述, 并对其发展前景予以展望.
徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933.
Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933.
[1] |
(a) Álvarez, R.; Vaz, B.; Gronemeyer, H.; deLera, Á. R. Chem. Rev. 2014, 114, 1.
doi: 10.1021/cr400126u pmid: 24266866 |
(b) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Chem. Rev. 2017, 117, 11680.
doi: 10.1021/acs.chemrev.6b00833 pmid: 24266866 |
|
[2] |
(a) Grigalunas, M.; Ankner, T.; Norrby, P.-O.; Wiest, O.; Helquist, P. Org. Lett. 2014, 16, 3970.
doi: 10.1021/ol5017965 pmid: 25032503 |
(b) Huang, E.; Bunel, E.; Faul, M. F. Org. Lett. 2007, 9, 4343.
doi: 10.1021/ol7019839 pmid: 25032503 |
|
[3] |
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
doi: 10.1126/science.1131943 pmid: 26756377 |
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C pmid: 26756377 |
|
(c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
doi: 10.1021/acs.jmedchem.5b00258 pmid: 26756377 |
|
(d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 pmid: 26756377 |
|
(e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
doi: 10.1021/acs.chemrev.5b00392 pmid: 26756377 |
|
(f) Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 1202.
doi: 10.1002/cjoc.v36.12 pmid: 26756377 |
|
[4] |
(a) Hedhli, A.; Baklouti, A. Tetrahedron Lett. 1995, 36, 4433.
doi: 10.1016/0040-4039(95)00783-9 pmid: 8399151 |
(b) Sporn, M. B.; Dunlop, N. M.; Newton, D. L.; Henderson, W. R. Nature 1976, 263, 110.
doi: 10.1038/263110a0 pmid: 8399151 |
|
(c) Zhu, Y.; Liu, R. S. H. Biochemistry 1993, 32, 10233.
pmid: 8399151 |
|
(d) Chopra, D. P.; Wilkoff, W. J. Eur. J. Cancer. 1979, 15, 1417.
doi: 10.1016/0014-2964(79)90019-7 pmid: 8399151 |
|
(e) Srisethnil, S. J. Med. Chem. 1979, 22, 1059.
doi: 10.1021/jm00195a010 pmid: 8399151 |
|
[5] |
(a) Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 16624.
doi: 10.1021/ja907170p |
(b) Abbas, S. Y.; Zhao, P.; Overman, L. E. Org. Lett. 2018, 20, 868.
doi: 10.1021/acs.orglett.7b04034 |
|
[6] |
(a) Jiang, B.; Liang, Q. J.; Han, Y. Org. Lett. 2018, 20, 3215.
doi: 10.1021/acs.orglett.8b01067 pmid: 26382149 |
(b) Kischkewitz, M.; Gerleve, C.; Studer, A. Org. Lett. 2018, 20, 3666.
doi: 10.1021/acs.orglett.8b01459 pmid: 26382149 |
|
(c) Tripathi, C. B.; Mukherjee, S. Org. Lett., 2015, 17, 4424.
doi: 10.1021/acs.orglett.5b02026 pmid: 26382149 |
|
(d) Dada, R.; Wei, Z.; Gui, R. Angew. Chem., Int. Ed. 2018, 57, 3981.
doi: 10.1002/anie.201800361 pmid: 26382149 |
|
[7] |
(a) Yang, X. H.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1774.
doi: 10.1021/jacs.6b12307 |
(b) Marcum, J. S.; Roberts, C. C.; Manan, R. S. J. Am. Chem. Soc. 2017, 139, 15580.
doi: 10.1021/jacs.7b08575 |
|
(c) Roberts, C. C.; Matías, D. M.; Goldfogel, M. J. J. Am. Chem. Soc. 2015, 137, 6488.
doi: 10.1021/jacs.5b03510 |
|
[8] |
(a) Guillam, A.; Toupet, L.; Maddaluno, J. J. Org. Chem. 1998, 63, 5110.
doi: 10.1021/jo980321h pmid: 20863073 |
(b) Gulías, M.; Durán, J.; López, F. J. Am. Chem. Soc. 2007, 129, 11026.
doi: 10.1021/ja0756467 pmid: 20863073 |
|
(c) Fujiwara, K.; Kurahashi, T.; Matsubara, S. Org. Lett. 2010, 12, 4548.
doi: 10.1021/ol101842y pmid: 20863073 |
|
(d) Liu, L.; Kim, H.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 13656.
doi: 10.1021/jacs.7b08357 pmid: 20863073 |
|
[9] |
(a) Barluenga, J.; Tomás, G. M.; Aznar, F. Adv. Synth. Catal. 2010, 352, 3235.
doi: 10.1002/adsc.v352.18 pmid: 29110364 |
(b) Zhang, X. M.; Yang, J.; Zhuang, Q. B. ACS Catal. 2018, 8, 6094.
doi: 10.1021/acscatal.8b01823 pmid: 29110364 |
|
(c) Kreyenschmidt, F.; Koszinowsk, K. Chem.-Eur. J. 2018, 24, 1168.
doi: 10.1002/chem.201704547 pmid: 29110364 |
|
[10] |
(a) Lopez, S. J. A.; Lamberti, M.; Pappalardo, D. Macromolecules 2003, 36, 9260.
doi: 10.1021/ma035038l pmid: 23202137 |
(b) Milione, S.; Cuomo, C.; Capacchione, C. Macromolecules 2007, 40, 5638.
doi: 10.1021/ma070543u pmid: 23202137 |
|
(c) Luo, K.; Kim, S. J.; Cartwright, A. N. Macromolecules 2011, 44, 4665.
doi: 10.1021/ma2004713 pmid: 23202137 |
|
(d) Bonnet, F.; Jones, C. E.; Semlali, C. Dalton Trans. 2013, 42, 790.
doi: 10.1039/c2dt31624b pmid: 23202137 |
|
(e) Kostjuk, S. V. RSC Adv. 2015, 5, 13125.
doi: 10.1039/C4RA15313H pmid: 23202137 |
|
[11] |
Zhang, J.; Lu, X.; Shen, C.; Xu, L.; Ding, L.; Zhong, G. Chem. Soc. Rev. 2021, 50, 3263
doi: 10.1039/d0cs00447b pmid: 33491691 |
[12] |
Walkowiak, J.; Szyling, J.; Franczyk, A.; Melen, R. L. Chem. Soc. Rev. 2022, 51, 869.
doi: 10.1039/D1CS00485A |
[13] |
Maikhuri, V. K.; Maity, J.; Srivastavac, S.; Prasad, A. K. Org. Biomol. Chem. 2022, 20, 9522.
doi: 10.1039/d2ob01646j pmid: 36412483 |
[14] |
(a) Sun, C.; Potter, B.; James, P. J. Am. Chem. Soc. 2014, 136, 6534.
doi: 10.1021/ja500029w |
(b) Nowothnick, H.; Blum, J.; Schomäcker, R. Angew. Chem., Int. Ed. 2011, 50, 1918.
doi: 10.1002/anie.v50.8 |
|
[15] |
(a) Cheng, S.; Zhao, R.; Seferos, D. S. Acc. Chem. Res. 2021, 54, 4203.
doi: 10.1021/acs.accounts.1c00556 |
(b) Jack, A.; William, T.; Darrow, M. R.; Brennan, C. A.; Leahy, A. R. Organometallics 2022, 41, 1769.
doi: 10.1021/acs.organomet.1c00513 |
|
[16] |
(a) Adenot, A.; Anthore-Dalion, L.; Nicolas, E.; Berthet, J.-C.; Thuéry, P. Chem.-Eur. J. 2021, 27, 18047.
doi: 10.1002/chem.v27.72 |
(b) Zhang, X.; Zhang, F.; Li, X.; Lu, M.-Z.; Meng, X.; Huang, L.; Luo, H. Org. Lett. 2022, 24, 5029.
doi: 10.1021/acs.orglett.2c01754 |
|
[17] |
(a) Gnaim, S.; Gholap, S. P.; Ge, L.; Das, S.; Gutkin, S.; Green, O.; Baran, P. S. Angew. Chem., Int. Ed. 2022, 61, e202202187.
|
(b) Chen, X.-Q.; Lu, H.; Chen, C.-X.; Zeng, R.; Wang, D.-Y.; Shi, C.-Y. J. Org. Chem. 2022, 87, 2935.
doi: 10.1021/acs.joc.1c02800 |
|
[18] |
(a) Shao, H.; Zhao, Y.; Wang, S.; Chen, R.; Wu, X. Org. Lett. 2022, 24, 6520.
doi: 10.1021/acs.orglett.2c02416 |
(b) Wu, Y.; Wu, L.; Zhang, Z.-M.; Xu, B.; Liu, Y.; Zhang, J. Chem. Sci. 2022, 13, 2021.
doi: 10.1039/D1SC06229H |
|
[19] |
Tellier, F. Bioorg. Med. Chem. Lett. 1991, 1, 635.
doi: 10.1016/S0960-894X(01)81167-7 |
[20] |
Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.
doi: 10.1039/C7SC03140H |
[21] |
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Tetrahedron 1996, 52, 6983.
doi: 10.1016/0040-4020(96)00303-1 |
[22] |
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Pace, P. Eur. J. Org. Chem. 1999, 1999, 3305.
doi: 10.1002/(ISSN)1099-0690 |
[23] |
Hansen, L. A.; Skrydstrup, T. Org. Lett. 2005, 7, 5585.
doi: 10.1021/ol052136d |
[24] |
Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby, P.-O.; Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349.
doi: 10.1002/(ISSN)1521-3773 |
[25] |
Yamashita, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 592.
doi: 10.1021/ol9027896 pmid: 20039617 |
[26] |
Hornillos, V.; Giannerini, M.; Vila, C.; Mastral, M. F.; Feringa, B. L. Chem. Sci. 2015, 6, 1394.
doi: 10.1039/c4sc03117b pmid: 29560227 |
[27] |
Paraja, M.; Barroso, R.; Valdes, C. Adv. Synth. Catal. 2017, 359, 1.
doi: 10.1002/adsc.v359.1 |
[28] |
Zhang, X.; Larock, R. C. Org. Lett. 2003, 5, 2993.
doi: 10.1021/ol0348349 |
[29] |
Shao, L.-X.; Shi, M. Org. Biomol. Chem. 2005, 3, 1828.
doi: 10.1039/b504071j |
[30] |
Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
doi: 10.1021/acs.jmedchem.7b01788 |
[31] |
Zhao, Q.; Wang, J.; Besset, T.; Pannecoucke, X.; Bouillona, J.-P.; Poisson, T. Tetrahedron 2018, 74, 6033.
doi: 10.1016/j.tet.2018.08.035 |
[32] |
Hussain, N.; Tatina, M. B.; Mukherjeea, D. Org. Biomol. Chem. 2018, 16, 2666.
doi: 10.1039/c8ob00168e pmid: 29577133 |
[33] |
Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc. 2012, 134, 16496.
doi: 10.1021/ja307371w |
[34] |
McAlpine, N. J.; Wang, L.; Carrow, B. P. J. Am. Chem. Soc. 2018, 140, 13634.
doi: 10.1021/jacs.8b10007 pmid: 30289691 |
[35] |
Hu, T.-J.; Li, M.-Y.; Zhao, Q.; Feng, C.-G.; Lin, G.-Q. Angew. Chem., Int. Ed. 2018, 57, 5871.
doi: 10.1002/anie.201801963 |
[36] |
Xue, Z.-J.; Li, M.-Y.; Zhu, B.-B.; He, Z.-T.; Feng, C.-G.; Lin, G.-Q. Adv. Synth. Catal. 2021, 363, 2089.
doi: 10.1002/adsc.v363.8 |
[37] |
Lin, J.; Huang, Z.; Ma, J.; Xu, B.-H.; Zhou, Y.-G.; Yu, Z. J. Org. Chem. 2022, 87, 12019.
doi: 10.1021/acs.joc.2c01019 |
[38] |
Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 17918.
doi: 10.1021/ja510266x |
[39] |
Jin, L.; Zhang, P.; Li, Y.; Yu, X.; Shi, B.-F. J. Am. Chem. Soc. 2021, 143, 12335.
doi: 10.1021/jacs.1c06236 |
[40] |
Dai, D.-T.; Yang, M.-W.; Chen, Z.-Y.; Wang, Z.-L.; Xu, Y.-H. Org. Lett. 2022, 24, 1979.
doi: 10.1021/acs.orglett.2c00386 |
[41] |
Shen, C.; Zhu, Y.; Shen, W.; Jin, S.; Zhong, G.; Luo, S.; Xu, L.; Zhong, L.; Zhang, J. Org. Chem. Front. 2022, 9, 2109.
doi: 10.1039/D2QO00161F |
[42] |
Zhu, C.; Yang, B.; Jiang, T.; Backvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 9066.
doi: 10.1002/anie.201502924 |
[43] |
Hampton, C. S.; Harmata, M. J. Org. Chem. 2016, 81, 4807.
doi: 10.1021/acs.joc.6b00880 |
[44] |
Parisotto, S.; Palagi, L.; Prandi, C.; Deagostino, A. Chem.-Eur. J. 2018, 24, 5484.
doi: 10.1002/chem.201800765 pmid: 29493826 |
[45] |
Vine, L. E.; Schomaker, J. M. Chem.-Eur. J. 2022, 28, e202103507.
|
[46] |
Nguyen, V. T.; Dang, H. T.; Pham, H. H.; Nguyen, V. D.; Hansen, C. F.; Arman, H. D.; Larionov, O. V. J. Am. Chem. Soc. 2018, 140, 8434.
doi: 10.1021/jacs.8b05421 pmid: 29936839 |
[47] |
Dang, H. T.; Nguyen, V. D.; Pham, H. H.; Arman, H. D.; Larionov, O. V. Tetrahedron 2019, 75, 3258.
doi: 10.1016/j.tet.2019.04.012 |
[48] |
Dang, H. T.; Nguyen, V. D.; Haug, G. C.; Vuong, N. T. H.; Arman, H. D.; Larionov, O. V. ACS Catal. 2021, 11, 1042.
doi: 10.1021/acscatal.0c05574 |
[49] |
Wu, X.-X.; Ye, H.; Dai, H.; Yang, B.; Wang, Y.; Chen, S.; Hu, L. Org. Chem. Front. 2020, 7, 2731.
doi: 10.1039/D0QO00615G |
[50] |
Matos, J. L. M.; Suhelen, V.-C.; Gu, J.; Oguma, T.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 16976.
doi: 10.1021/jacs.8b11699 |
[51] |
Zhou, P.; Jiang, H.; Huang, L.; Li, X. Chem. Commun. 2011, 47, 1003.
doi: 10.1039/C0CC03723K |
[52] |
Awaheri, Y. A.; Kimber, M. C. Org. Lett. 2016, 18, 3502.
doi: 10.1021/acs.orglett.6b01841 |
[53] |
Liu, J.; Yang, J.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed., 2019, 58, 10378.
doi: 10.1002/anie.v58.31 |
[54] |
Gao, S.; Liu, H.; Yang, C.; Fu, Z.; Yao, H.; Lin, A. Org. Lett. 2017, 19, 4710.
doi: 10.1021/acs.orglett.7b01960 |
[55] |
Ping, Y.; Zhang, S.; Chang, T.; Wang, J. J. Org. Chem. 2019, 84, 8275.
doi: 10.1021/acs.joc.9b00922 |
[56] |
Yu, H.; Yu, B.; Zhang, H.; Huang, H. Org. Lett. 2021, 23, 3891.
doi: 10.1021/acs.orglett.1c01019 |
[57] |
Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.
doi: 10.1039/C7SC03140H |
[58] |
Huang, Y.-K.; Zhang, W.-Z.; Zhang, K.; Wang, W.-L.; Lu, X.-B. Org. Chem. Front. 2021, 8, 941.
doi: 10.1039/D0QO01465F |
[59] |
Wang, K.; Chen, S.; Zhang, H.; Xu, S.; Ye, F.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2016, 14, 3809.
doi: 10.1039/C6OB00454G |
[60] |
Keerthana, M. S.; Jeganmohan, M. Chem. Commun. 2022, 58, 8814.
doi: 10.1039/D2CC02896D |
[61] |
Kakiuchi, F.; Uetsuhara, T.; Tanaka, Y.; Chatani, N.; Murai, S. J. Mol. Catal. A: Chem. 2002, 182, 511.
|
[62] |
Neisius, N. M.; Plietker, B. Angew. Chem., Int. Ed. 2009, 48, 5752.
doi: 10.1002/anie.v48:31 |
[63] |
Rohde, L. N.; Wild, J.; Diver, S. T. J. Org. Chem. 2021, 86, 1371.
doi: 10.1021/acs.joc.0c02886 |
[64] |
Huang, F.; Huang, Z.; Liu, G.; Huang, Z. Org. Lett. 2022, 24, 5486.
doi: 10.1021/acs.orglett.2c02327 |
[65] |
Hu, X.-H.; Zhang, J.; Yang, X.-F.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 3169.
doi: 10.1021/ja512237d pmid: 25634134 |
[66] |
Frątczak, J. S.; Marciniec, B.; Hreczycho, G.; Kubicki, M.; Pawluc, P. Org. Lett. 2015, 17, 2366.
doi: 10.1021/acs.orglett.5b00865 |
[67] |
Korkis, S. E.; Burns, D. J.; Lam, H. W. J. Am. Chem. Soc. 2016, 138, 12252.
doi: 10.1021/jacs.6b06884 |
[68] |
(a) Hedhli, A.; Baklouti, A. Tetrahedron Lett. 1995, 36, 4433.
doi: 10.1016/0040-4039(95)00783-9 pmid: 8399151 |
(b) Zhu, Y.; Liu, R. S. H. Biochemistry 1993, 32, 10233.
pmid: 8399151 |
|
[69] |
Song, S.; Liu, H.; Wang, L.; Zhu, C.; Loh, T.-P.; Feng, C. Chin. J. Chem. 2019, 37, 1036.
doi: 10.1002/cjoc.v37.10 |
[70] |
Scaringi, S.; Mazet, C. ACS Catal. 2021, 11, 7970.
doi: 10.1021/acscatal.1c02144 |
[71] |
Russo, T. V. C.; Marcus, M. S. Eur. J. Org. Chem. 2021, 2021, 4174.
doi: 10.1002/ejoc.v2021.29 |
[72] |
Hoshi, T.; Ota, E.; Inokuma, Y.; Yamaguchi, J. Org. Lett. 2019, 21, 10081.
doi: 10.1021/acs.orglett.9b04048 |
[73] |
Takagi, K.; Mimura, H.; Inokawa, S. Bull. Chem. Soc. Jpn. 1984, 57, 3517.
doi: 10.1246/bcsj.57.3517 |
[74] |
Vanderesse, R.; Fort, Y.; Becker, S.; Caubere, P. Tetrahedron Lett. 1986, 27, 3517.
doi: 10.1016/S0040-4039(00)84838-8 |
[75] |
Cannes, C.; Condon, S.; Durandetti, M.; Périchon, J.; Nédélec, J.-Y. J. Org. Chem. 2000, 65, 4575.
pmid: 10959862 |
[76] |
Cai, L. S.; Lu, S. Y.; Pike, V. W. Eur. J. Org. Chem. 2008, 2008, 2853.
doi: 10.1002/ejoc.v2008:17 |
[77] |
Kawashima, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2017, 139, 49, 17795.
doi: 10.1021/jacs.7b12007 pmid: 29149562 |
[78] |
Ackerman1, L. K. G.; Lovell, M. M.; Weix, D. J. Nature 2015, 524, 454.
doi: 10.1038/nature14676 |
[79] |
Olivares, A. M.; Weix, D. J. J. Am. Chem. Soc. 2018, 140, 2446.
doi: 10.1021/jacs.7b13601 pmid: 29420028 |
[80] |
Xu, G.-L.; Liu, C.-Y.; Pang, X.; Liu, X.-Y.; Shu, X.-Z. CCS Chem. 2021, 3, 1147.
|
[81] |
Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. ACS Catal. 2018, 8, 1392.
doi: 10.1021/acscatal.7b04030 |
[82] |
Poisson, P.-A.; Tran, G.; Besnard, C.; Mazet, C. ACS Catal. 2021, 11, 15041.
doi: 10.1021/acscatal.1c04800 |
[83] |
Chen, Y.; Zhu, K.; Huang, Q.; Lu, Y. Chem. Sci. 2021, 12, 13564.
doi: 10.1039/d1sc04320j pmid: 34777776 |
[84] |
Whitesides, G. M.; Casey, C. P.; Krieger, J. K. J. Am. Chem. Soc. 1971, 93, 1379.
doi: 10.1021/ja00735a011 |
[85] |
Li, Y.; Wu, J.; Li, H.; Sun, Q.; Xiong, L.; Yin, G. Org. Chem. Front. 2021, 8, 628.
doi: 10.1039/D0QO01256D |
[86] |
Hou, C.-J.; Schuppe, A. W.; Knippel, J. L.; Buchwald, S. L. Org. Lett. 2021, 23, 8816.
doi: 10.1021/acs.orglett.1c03324 |
[87] |
Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem., Int. Ed. 2011, 50, 2778.
doi: 10.1002/anie.v50.12 |
[88] |
Jia, J.; Yuan, F.; Zhang, Z.; Song, X.; Hu, F.; Xia, Y. Org. Lett. 2022, 24, 1985.
doi: 10.1021/acs.orglett.2c00403 |
[89] |
Galiñanes, V.-N.; Mastral, M. F. ChemCatChem 2018, 10, 4817.
doi: 10.1002/cctc.v10.21 |
[90] |
Xu, W.-Y.; Li, Y.-J.; Gong, T.-J.; Fu, Y. Org. Lett. 2022, 24, 5884.
doi: 10.1021/acs.orglett.2c01875 |
[91] |
Campbell, N. E.; Sammis, G. M. Angew. Chem., Int. Ed. 2014, 53, 6228.
doi: 10.1002/anie.201403234 |
[92] |
Liu, Y.; Wang, L.; Deng, L. J. Am. Chem. Soc. 2016, 138, 1, 112.
doi: 10.1021/jacs.6b00054 |
[93] |
Liu, Q.; Wang, Z.-Y.; Peng, X.-S.; Wong, H. N. C. J. Org. Chem. 2018, 83, 6325.
doi: 10.1021/acs.joc.8b00510 |
[94] |
Cao, X.; Huang, F.; Zhang, S. Synlett 2019, 30, 1437.
doi: 10.1055/s-0039-1690096 |
[95] |
Molina, E. R.; Nievas, M. M.; Navarro, J. A. R.; Oltra, J. E. Chem.-Eur. J. 2020, 26, 8296.
doi: 10.1002/chem.v26.37 |
[96] |
Huang, Q.; Hu, M.-Y.; Zhu, S.-F. Org. Lett. 2019, 21, 7883.
doi: 10.1021/acs.orglett.9b02873 |
Xu, Q.; Zheng, B.; Zhou, X.; Pan, L.; Liu, Q.; Li, Y. Org. Lett. 2020, 22, 1692.
doi: 10.1021/acs.orglett.9b04201 |
[1] | 佘春艳, 王安静, 刘珊, 舒文明, 余维初. 芳乙酰叠氮的制备及其在有机合成中的应用进展[J]. 有机化学, 2024, 44(2): 481-507. |
[2] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[3] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[4] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[5] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[6] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[7] | 周姝彤, 涂胜男, 高子健, 王叶梅, 孙莎莎. 亚酞菁的合成、性质与应用研究进展[J]. 有机化学, 2023, 43(8): 2628-2646. |
[8] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[9] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[10] | 杨亮茹, 郭梦丽, 袁金伟, 王佳美, 夏宇婷, 肖咏梅, 毛璞. 钳形氮杂环卡宾金属络合物的研究进展[J]. 有机化学, 2023, 43(6): 2002-2025. |
[11] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[12] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[13] | 白林盛, 洪鹏, 应安国. 功能化聚丙烯腈纤维促进有机反应的研究进展[J]. 有机化学, 2023, 43(4): 1241-1270. |
[14] | 莫百川, 陈春霞, 彭进松. 木质素及其衍生物负载金属催化剂在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1215-1240. |
[15] | 吴孔川, 卢铠洪, 林建斌, 张慧君. 莱啉酰亚胺类化合物的邻位C—H键功能化研究进展[J]. 有机化学, 2023, 43(3): 1000-1011. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||