有机化学 ›› 2023, Vol. 43 ›› Issue (7): 2499-2505.DOI: 10.6023/cjoc202212008 上一篇 下一篇
研究论文
石义军a,*(), 孙馨悦a, 曹晗a, 别福升a, 马杰a, 刘哲b, 丛兴顺a,*()
收稿日期:
2022-12-06
修回日期:
2023-01-28
发布日期:
2023-02-22
通讯作者:
石义军, 丛兴顺
基金资助:
Yijun Shia(), Xinyue Suna, Han Caoa, Fusheng Biea, Jie Maa, Zhe Liub, Xingshun Conga()
Received:
2022-12-06
Revised:
2023-01-28
Published:
2023-02-22
Contact:
Yijun Shi, Xingshun Cong
Supported by:
文章分享
报道了在室温下酯与伯硫醇的硫酯化反应. 该方法的优点包括不使用过渡金属、条件温和、官能团耐受性良好、底物范围广泛及对脂肪醇酯和酚酯基团的优异化学选择性. 该方法成功地应用于丙磺舒硫酯的合成和顺序键的活化.
石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505.
Yijun Shi, Xinyue Sun, Han Cao, Fusheng Bie, Jie Ma, Zhe Liu, Xingshun Cong. Thioesterification of Esters with Primary Aliphatic Thiols at Room Temperature[J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2499-2505.
Entry | Base | Solvent | Yieldb/% |
---|---|---|---|
1 | Na2CO3 | THF | <5 |
2 | K2CO3 | THF | 89 |
3 | Cs2CO3 | THF | 73 |
4 | NaHCO3 | THF | <5 |
5 | K3PO4 | THF | 98 |
6 | NaOAc | THF | <5 |
7 | KOAc | THF | <5 |
8 | KF | THF | <5 |
9 | NaOH | THF | 8 |
10 | KOH | THF | 45 |
11 | LiOt-Bu | THF | 88 |
12 | NaOt-Bu | THF | 10 |
13 | KOt-Bu | THF | <5 |
14 | Et3N | THF | <5 |
15 | DIPEA | THF | <5 |
16 | DMAP | THF | <5 |
17 | Pyridine | THF | <5 |
18 | — | THF | <5 |
19 | K3PO4 | Toluene | <5 |
20 | K3PO4 | Dioxane | 90 |
21 | K3PO4 | CH3CN | 82 |
22c | K3PO4 | THF | 98 |
23d | K3PO4 | THF | 98 |
24e | K3PO4 | THF | 98 |
25f | K3PO4 | THF | 73 |
26g | K3PO4 | THF | 98 |
27h | K3PO4 | THF | 88 |
Entry | Base | Solvent | Yieldb/% |
---|---|---|---|
1 | Na2CO3 | THF | <5 |
2 | K2CO3 | THF | 89 |
3 | Cs2CO3 | THF | 73 |
4 | NaHCO3 | THF | <5 |
5 | K3PO4 | THF | 98 |
6 | NaOAc | THF | <5 |
7 | KOAc | THF | <5 |
8 | KF | THF | <5 |
9 | NaOH | THF | 8 |
10 | KOH | THF | 45 |
11 | LiOt-Bu | THF | 88 |
12 | NaOt-Bu | THF | 10 |
13 | KOt-Bu | THF | <5 |
14 | Et3N | THF | <5 |
15 | DIPEA | THF | <5 |
16 | DMAP | THF | <5 |
17 | Pyridine | THF | <5 |
18 | — | THF | <5 |
19 | K3PO4 | Toluene | <5 |
20 | K3PO4 | Dioxane | 90 |
21 | K3PO4 | CH3CN | 82 |
22c | K3PO4 | THF | 98 |
23d | K3PO4 | THF | 98 |
24e | K3PO4 | THF | 98 |
25f | K3PO4 | THF | 73 |
26g | K3PO4 | THF | 98 |
27h | K3PO4 | THF | 88 |
[1] |
(a) Suazo, K. F.; Park, K. Y.; Distefano, M. D. Chem. Rev. 2021, 121, 7178.
doi: 10.1021/acs.chemrev.0c01108 pmid: 35304808 |
(b) Orrillo, A. G.; Furlan, R. L. E. Angew. Chem., Int. Ed. 2022, 61, e202201168.
doi: 10.1002/anie.202200535 pmid: 35304808 |
|
[2] |
(a) Hojo, H.; Takei, T.; Asahina, Y.; Okumura, N.; Takao, T.; So, M.; Suetake, I.; Sato, T.; Kawamoto, A.; Hirabayashi, Y. Angew. Chem., Int. Ed. 2021, 60, 13900.
doi: 10.1002/anie.v60.25 |
(b) Chen, X.-L.; Wang, B.; Song, D.-P.; Pan, L.; Li, Y.-S. Macromolecules 2022, 55, 1153.
doi: 10.1021/acs.macromol.1c02303 |
|
(c) Hernandez, J. J.; Dobson, A. L.; Carberry, B. J.; Kuenstler, A. S.; Shah, P. K.; Anseth, K. S.; White, T. J.; Bowman, C. N. Macromolecules 2022, 55, 1376.
doi: 10.1021/acs.macromol.1c02459 |
|
(d) Zuo, C.; Ding, R.; Wu, X.; Wang, Y.; Chu, G.-C.; Liang, L.-J.; Ai, H.; Tong, Z.-B.; Mao, J.; Zheng, Q.; Wang, T.; Li, Z.; Liu, L.; Sun, D. Angew. Chem., Int. Ed. 2022, 61, e202201887.
|
|
[3] |
(a) Roy, V. J.; Sen, P. P.; Raha Roy, S. J. Org. Chem. 2021, 86, 16965.
doi: 10.1021/acs.joc.1c02111 |
(b) Jha, R. K.; Upadhyay, A.; Kanika; Jain, S.; K, A. N.; Kumar, S. Org. Lett. 2022, 24, 7605.
doi: 10.1021/acs.orglett.2c03066 |
|
[4] |
(a) Feng, Y.; Yang, S.; Zhao, S.; Zhang, D. P.; Li, X.; Liu, H.; Dong, Y.; Sun, F. G. Org. Lett. 2020, 22, 6734.
doi: 10.1021/acs.orglett.0c02091 |
(b) Zhu, Z.; Gong, Y.; Tong, W.; Xue, W.; Gong, H. Org. Lett. 2021, 23, 2158.
doi: 10.1021/acs.orglett.1c00313 |
|
(c) Oyamada, Y.; Inaba, K.; Sasamori, T.; Nakamura, S. Chem. Commun. 2022, 58, 2172.
doi: 10.1039/D1CC07191B |
|
[5] |
(a) Li, Y.; Bao, G.; Wu, X.-F. Chem. Sci. 2020, 11, 2187.
doi: 10.1039/C9SC05532K |
(b) Tian, Q.; Xu, S.; Zhang, C.; Liu, X.; Wu, X.; Li, Y. J. Org. Chem. 2021, 86, 8797.
doi: 10.1021/acs.joc.1c00665 |
|
[6] |
(a) Xu, J. X.; Bao, Z. P.; Wu, X. F. Org. Lett. 2022, 24, 1848.
doi: 10.1021/acs.orglett.2c00422 |
(b) Yano de Albuquerque, D.; Teixeira, W. K. O.; Sacramento, M. D.; Alves, D.; Santi, C.; Schwab, R. S. J. Org. Chem. 2022, 87, 595.
doi: 10.1021/acs.joc.1c02608 |
|
[7] |
(a) Cellnik, T.; Healy, A. R. J. Org. Chem. 2022, 87, 6454.
doi: 10.1021/acs.joc.2c00330 |
(b) Huo, Y. W.; Qi, X.; Wu, X. F. Org. Lett. 2022, 24, 4009.
doi: 10.1021/acs.orglett.2c01430 |
|
(c) Xu, R.-R.; Wang, W.; Qi, X.; Wu, X.-F. Org. Chem. Front. 2022, 9, 1417.
doi: 10.1039/D2QO00096B |
|
[8] |
(a) Dong, J.; Yue, F.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2020, 22, 8272.
doi: 10.1021/acs.orglett.0c02902 |
(b) Yan, J.; Tang, H.; Kuek, E. J. R.; Shi, X.; Liu, C.; Zhang, M.; Piper, J. L.; Duan, S.; Wu, J. Nat. Commun. 2021, 12, 7214.
doi: 10.1038/s41467-021-27550-8 |
|
(c) Xu, J. X.; Wang, L. C.; Wu, X. F. Org. Lett. 2022, 24, 4820.
doi: 10.1021/acs.orglett.2c01951 |
|
[9] |
Kim, Y.; Song, K. H.; Lee, S. Org. Chem. Front. 2020, 7, 2938.
doi: 10.1039/D0QO00748J |
[10] |
(a) Xu, T.; Cao, T.; Yang, M.; Xu, R.; Nie, X.; Liao, S. Org. Lett. 2020, 22, 3692.
doi: 10.1021/acs.orglett.0c01180 |
(b) Wang, Z.; Lin, X.; Chen, X.; Li, P.; Li, W. Org. Chem. Front. 2021, 8, 3469.
doi: 10.1039/D1QO00394A |
|
(c) Volkov, A. A.; Bugaenko, D. I.; Bogdanov, A. V.; Karchava, A. V. J. Org. Chem. 2022, 87, 8170.
doi: 10.1021/acs.joc.2c00913 |
|
(d) Ziyaei Halimehjani, A.; Breit, B. Chem. Commun. 2022, 58, 1704.
doi: 10.1039/D1CC06470C |
|
[11] |
(a) Murakami, S.; Nanjo, T.; Takemoto, Y. Org. Lett. 2021, 23, 7650.
doi: 10.1021/acs.orglett.1c02904 |
(b) Nemeth, A. G.; Szabo, R.; Nemeth, K.; Keseru, G. M.; Abranyi- Balogh, P. Org. Biomol. Chem. 2022, 20, 4361.
doi: 10.1039/D2OB00512C |
|
[12] |
Qiao, Z.; Jiang, X. Org. Lett. 2016, 18, 1550.
doi: 10.1021/acs.orglett.6b00324 |
[13] |
Sundaravelu, N.; Nandy, A.; Sekar, G. Org. Lett. 2021, 23, 3115.
doi: 10.1021/acs.orglett.1c00806 pmid: 33826352 |
[14] |
(a) Borgini, M.; Zamperini, C.; Poggialini, F.; Ferrante, L.; Summa, V.; Botta, M.; Fabio, R. D. ACS Med. Chem. Lett. 2020, 11, 846.
doi: 10.1021/acsmedchemlett.9b00643 pmid: 32435394 |
(b) Mavila, S.; Culver, H. R.; Anderson, A. J.; Prieto, T. R.; Bowman, C. N. Angew. Chem., Int. Ed. 2022, 61, e202110741.
pmid: 32435394 |
|
(c) Sun, Y.-T.; Rao, X.; Xu, W.; Xu, M.-H. Org. Chem. Front. 2022, 9, 3467.
doi: 10.1039/D2QO00164K pmid: 32435394 |
|
[15] |
Jhawer, M.; Rosen, L.; Dancey, J.; Hochster, H.; Hamburg, S.; Tempero, M.; Clendeninn, N.; Mani, S. Invest. New Drugs 2007, 25, 85.
doi: 10.1007/s10637-006-9003-x |
[16] |
Tian, Q.; Sun, R.; Li, Y. Org. Biomol. Chem. 2022, 20, 1186.
doi: 10.1039/D2OB00008C |
[17] |
Jiang, X.; Wang, G.; Zheng, Z.; Yu, X.; Hong, Y.; Xia, H.; Yu, C. Org. Lett. 2020, 22, 9762.
doi: 10.1021/acs.orglett.0c03860 |
[18] |
(a) Liu, X. S.; Tang, Z.; Li, Z.; Li, M.; Xu, L.; Liu, L. Nat. Commun. 2021, 12, 7298.
doi: 10.1038/s41467-021-27167-x |
(b) Shen, L. W.; Zhang, Y. P.; You, Y.; Zhao, J. Q.; Wang, Z. H.; Yuan, W. C. J. Org. Chem. 2022, 87, 4232.
doi: 10.1021/acs.joc.1c03072 |
|
(c) Wu, Q.; Zhao, Y.-H.; Lu-Lu, C.; Li, H.-Y.; Li, H.-X. Org. Chem. Front. 2022, 9, 2977.
doi: 10.1039/D2QO00155A |
|
[19] |
Sun, F.; Li, M.; He, C.; Wang, B.; Li, B.; Sui, X.; Gu, Z. J. Am. Chem. Soc. 2016, 138, 7456.
doi: 10.1021/jacs.6b02495 |
[20] |
(a) Date, S.; Hamasaki, K.; Sunagawa, K.; Koyama, H.; Sebe, C.; Hiroya, K.; Shigehisa, H. ACS Catal. 2020, 10, 2039.
doi: 10.1021/acscatal.9b05045 pmid: 33307686 |
(b) Ahlemeyer, N. A.; Straub, M. R.; Leace, D. M.; Matz, B. A.; Birman, V. B. J. Org. Chem. 2021, 86, 1191.
doi: 10.1021/acs.joc.0c02091 pmid: 33307686 |
|
[21] |
(a) Bie, F.; Liu, X.; Cao, H.; Shi, Y.; Zhou, T.; Szostak, M.; Liu, C. Org. Lett. 2021, 23, 8098.
doi: 10.1021/acs.orglett.1c03232 |
(b) Liu, C.; Szostak, M. Org. Chem. Front. 2021, 8, 4805.
doi: 10.1039/D1QO00824B |
|
[22] |
(a) Liu, C.; Szostak, M. Chem. Commun. 2018, 54, 2130.
doi: 10.1039/C8CC00271A |
(b) Cao, H.; Liu, X.; Bie, F.; Shi, Y.; Han, Y.; Yan, P.; Szostak, M.; Liu, C. J. Org. Chem. 2021, 86, 10829.
doi: 10.1021/acs.joc.1c01117 |
|
(c) Cao, H.; Liu, X.; Bie, F.; Shi, Y.; Han, Y.; Yan, P.; Szostak, M.; Liu, C. Org. Chem. Front. 2021, 8, 1587.
doi: 10.1039/D0QO01576H |
|
(d) Zhou, J. Y.; Tian, R.; Zhu, Y. M. J. Org. Chem. 2021, 86, 12148.
doi: 10.1021/acs.joc.1c01480 |
|
[23] |
(a) Kazemi, M.; Shiri, L. J. Sulfur Chem. 2015, 36, 613.
doi: 10.1080/17415993.2015.1075023 pmid: 29178255 |
(b) Hirschbeck, V.; Gehrtz, P. H.; Fleischer, I. Chem.-Eur. J. 2018, 24, 7092.
doi: 10.1002/chem.201705025 pmid: 29178255 |
|
[24] |
(a) Brigham, C. E.; Malapit, C. A.; Lalloo, N.; Sanford, M. S. ACS Catal. 2020, 10, 8315.
doi: 10.1021/acscatal.0c02950 pmid: 34306801 |
(b) Liu, T.; Zhang, X.; Peng, Z.; Zhao, J. Green Chem. 2021, 23, 9916.
doi: 10.1039/D1GC03498G pmid: 34306801 |
|
(c) Iimura, S.; Manabe, K.; Kobayashi, S. Chem. Commun. 2002, 1, 94.
doi: 10.1038/s42004-018-0088-x pmid: 34306801 |
|
[25] |
(a) Luo, J.; Rauch, M.; Avram, L.; Diskin-Posner, Y.; Shmul, G.; Ben-David, Y.; Milstein, D. Nat. Catal. 2020, 3, 887.
doi: 10.1038/s41929-020-00514-9 |
(b) Park, S. J.; Hwang, I. S.; Chang, Y. J.; Song, C. E. J. Am. Chem. Soc. 2021, 143, 2552.
doi: 10.1021/jacs.0c11815 |
|
(c) Rauch, M.; Luo, J.; Avram, L.; Ben-David, Y.; Milstein, D. ACS Catal. 2021, 11, 2795.
doi: 10.1021/acscatal.1c00418 |
|
[26] |
(a) Hirschbeck, V.; Gehrtz, P. H.; Fleischer, I. J. Am. Chem. Soc. 2016, 138, 16794.
doi: 10.1021/jacs.6b11020 pmid: 27966917 |
(b) Wang, X.; Wang, B.; Yin, X.; Yu, W.; Liao, Y.; Ye, J.; Wang, M.; Hu, L.; Liao, J. Angew. Chem., Int. Ed. 2019, 58, 12264.
doi: 10.1002/anie.v58.35 pmid: 27966917 |
|
(c) Ai, H.-J.; Lu, W.; Wu, X.-F. Angew. Chem., Int. Ed. 2021, 60, 17178.
doi: 10.1002/anie.v60.31 pmid: 27966917 |
|
(d) Ai, H.-J.; Zhao, F.; Geng, H.-Q.; Wu, X.-F. ACS Catal. 2021, 11, 3614.
doi: 10.1021/acscatal.1c00414 pmid: 27966917 |
|
[27] |
(a) Li, G.; Szostak, M. Nat. Commun. 2018, 9, 4165.
doi: 10.1038/s41467-018-06623-1 |
(b) Wang, Q.; Liu, L.; Dong, J.; Tian, Z.; Chen, T. New J. Chem. 2019, 43, 9384.
doi: 10.1039/c9nj01748h |
|
(c) Kuciński, K.; Hreczycho, G. Org. Process Res. Dev. 2018, 22, 489.
doi: 10.1021/acs.oprd.7b00378 |
|
(d) Contente, M. L.; Roura Padrosa, D.; Molinari, F.; Paradisi, F. Nat. Catal. 2020, 3, 1020.
doi: 10.1038/s41929-020-00539-0 |
|
(e) Rahman, M. M.; Li, G.; Szostak, M. Synthesis 2020, 52, 1060.
doi: 10.1055/s-0039-1690055 |
|
(f) Shi, Y.; Liu, X.; Cao, H.; Bie, F.; Han, Y.; Yan, P.; Szostak, R.; Szostak, M.; Liu, C. Org. Biomol. Chem. 2021, 19, 2991.
doi: 10.1039/D1OB00187F |
|
[28] |
Niwa, E.; Aoki, H.; Tanaka, H.; Tamura, T. Y.; Pang, J. H.; Wata- nabe, K.; Takita, R.; Chiba, S. Nippon Nogei Kagaku Kaishi 1967, 41, 135.
doi: 10.1271/nogeikagaku1924.41.4_135 |
[29] |
Yi, C.-L.; Huang, Y.-T.; Lee, C.-F. Green Chem. 2013, 15, 2476.
doi: 10.1039/c3gc40946e |
[30] |
Maruani, A.; Lee, M. T. W.; Watkins, G.; Akhbar, A. R.; Baggs, H.; Shamsabadi, A.; Richards, D. A.; Chudasama, V. RSC Adv. 2016, 6, 3372.
doi: 10.1039/C5RA26842G |
[31] |
Nyquist, R. A.; Potts, W. J. Spectrochim. Acta 1959, 15, 514.
doi: 10.1016/S0371-1951(59)80348-9 |
[32] |
Zeng, J.-W.; Liu, Y.-C.; Hsieh, P.-A.; Huang, Y.-T.; Yi, C.-L.; Badsara, S. S.; Lee, C.-F. Green Chem. 2014, 16, 2644.
doi: 10.1039/C4GC00025K |
[33] |
Samanta, R. C.; De Sarkar, S.; Fröhlich, R.; Grimme, S.; Studer, A. Chem. Sci. 2013, 4, 2177.
doi: 10.1039/c3sc00099k |
[1] | 张勇, 田志高, 黄琳, 侯秋飞, 范红红, 汪万强. α-氰醇甲磺酸酯在合成α-氨基腈类化合物中的应用[J]. 有机化学, 2024, 44(2): 561-572. |
[2] | 陶苏艳, 项紫欣, 白俊杰, 万潇, 万小兵. 亚硝酸叔丁酯参与的酰胺水解反应[J]. 有机化学, 2024, 44(2): 550-560. |
[3] | 江港钟, 林嘉欣, 鲍晓光, 万小兵. 亚硝酸异戊酯活化伯磺酰胺制备磺酰溴与磺酰氯[J]. 有机化学, 2024, 44(2): 533-549. |
[4] | 文思, 丁宇浩, 田青于, 葛进, 程国林. 铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶[J]. 有机化学, 2024, 44(1): 291-300. |
[5] | 朱传涛, 王松, 赵一凡, Herdewijn Piet, 刘丰五. 新型2,2'-缩水-L-苏糖嘧啶膦酸核苷的合成[J]. 有机化学, 2023, 43(9): 3167-3173. |
[6] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[7] | 钟赟哲, 陈颖, 俞磊, 周宏伟. 电化学介导羧酸与醇的酯化反应[J]. 有机化学, 2023, 43(8): 2855-2863. |
[8] | 周章涛, 王杨, 程冰心, 叶伟平. [RuCl(p-cymene)-(S)-BINAP]Cl催化不对称合成反式-3-氨基-双环[2.2.2]辛烷-2-甲酸乙酯[J]. 有机化学, 2023, 43(8): 2961-2967. |
[9] | 胡慧娟, 闫巧丽, 卢晓刚, 杨启帆, 裴承新, 王红梅, 高润利. 猪胰脂肪酶催化外消旋P-手性α-羟基磷酸酯类化合物的动力学拆分[J]. 有机化学, 2023, 43(8): 2815-2825. |
[10] | 丁俊, 史啸坤, 郝宇, 白贺元, 张书宇. 银催化的β,γ-不饱和酰胺的不对称γ-胺化反应[J]. 有机化学, 2023, 43(8): 2946-2952. |
[11] | 张彦波, 孙萌. 铑催化碳酸亚乙烯酯与吲哚啉C(7)位C—H甲酰甲基化反应[J]. 有机化学, 2023, 43(8): 2905-2912. |
[12] | 周林, 杨鸿, 杨川, 赵志刚, 李清寒. 非共轭丁烯内酯α-和β-位反应研究进展[J]. 有机化学, 2023, 43(7): 2407-2424. |
[13] | 张维舒, 聂礼飞, Khurshed Bozorov, 阿吉艾克拜尔•艾萨, 赵江瑜. 2,5-二氨基噻吩-3,4-二羧酸二乙酯衍生物的合成及抗肿瘤活性研究[J]. 有机化学, 2023, 43(7): 2543-2552. |
[14] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
[15] | 王余, 陈艺方, 罗鑫, 邢志富, 彭菊, 陈吉祥. 新型2-氰基丙烯酸酯(酰胺)类衍生物的设计合成及杀线虫活性研究[J]. 有机化学, 2023, 43(6): 2206-2216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||