有机化学 ›› 2023, Vol. 43 ›› Issue (11): 3960-3965.DOI: 10.6023/cjoc202304022 上一篇 下一篇
研究论文
马豪杰*(), 周风院, 苏凡文, 韩波, 李然, 张玉琦*(), 王记江
收稿日期:
2023-04-18
修回日期:
2023-06-06
发布日期:
2023-07-05
基金资助:
Haojie Ma(), Fengyuan Zhou, Fanwen Su, Bo Han, Ran Li, Yuqi Zhang(), Jijiang Wang
Received:
2023-04-18
Revised:
2023-06-06
Published:
2023-07-05
Contact:
E-mail: Supported by:
文章分享
报道了一种新颖、简便的N,N-二甲基乙酰胺(DMA)与胺的转酰胺反应, 用于合成乙酰胺类化合物, 产率适中至优良. 廉价的碘可以有效地促进该反应, 且反应条件简单、官能团耐受性良好、无需预官能团化, 具有一定的实用性, 可广泛用于乙酰胺药物和生物活性分子的合成.
马豪杰, 周风院, 苏凡文, 韩波, 李然, 张玉琦, 王记江. 碘促进N,N-二甲基乙酰胺(DMA)与胺的转酰胺反应[J]. 有机化学, 2023, 43(11): 3960-3965.
Haojie Ma, Fengyuan Zhou, Fanwen Su, Bo Han, Ran Li, Yuqi Zhang, Jijiang Wang. Iodine-Promoted Transamidation of N,N-Dimethylacetamide (DMA) with Amines[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3960-3965.
Entry | I2/equiv. | Atmosphere | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | 1.0 | Air | 140 | 31 |
2 | 1.0 | O2 | 140 | Trace |
3 | 1.0 | N2 | 140 | 54 |
4 | 0.5 | N2 | 140 | 90 |
5 | 1.5 | N2 | 140 | 40 |
6 | 0.2 | N2 | 140 | 36 |
7 | 0.1 | N2 | 140 | 30 |
8 | 0.5 | N2 | 120 | 61 |
9 | 0.5 | N2 | 160 | 68 |
10c | 0.5 | N2 | 120 | 24 |
Entry | I2/equiv. | Atmosphere | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | 1.0 | Air | 140 | 31 |
2 | 1.0 | O2 | 140 | Trace |
3 | 1.0 | N2 | 140 | 54 |
4 | 0.5 | N2 | 140 | 90 |
5 | 1.5 | N2 | 140 | 40 |
6 | 0.2 | N2 | 140 | 36 |
7 | 0.1 | N2 | 140 | 30 |
8 | 0.5 | N2 | 120 | 61 |
9 | 0.5 | N2 | 160 | 68 |
10c | 0.5 | N2 | 120 | 24 |
[1] |
(a) Nagaraaj, P.; Vijayakumar, V. Org. Chem. Front. 2019, 6, 2570.
doi: 10.1039/c9qo00387h pmid: 23586467 |
(b) Zeng, Ch. F.; He, Y.; Li, Q.; Dong, L. Chin. J. Org. Chem. 2023, 43, 1115. (in Chinese)
doi: 10.6023/cjoc202210033 pmid: 23586467 |
|
(曾成富, 何媛, 李清, 董琳, 有机化学, 2023, 43, 1115.)
doi: 10.6023/cjoc202210033 pmid: 23586467 |
|
(c) Yin, J. W.; Zhang, J. Y.; Cai, C. Q.; Deng, G. J.; Gong, H. Org. Lett. 2019, 21, 387.
doi: 10.1021/acs.orglett.8b03542 pmid: 23586467 |
|
(d) Zheng, Y. L.; Newman, S. G. ACS Catal. 2019, 9, 4426.
doi: 10.1021/acscatal.9b00884 pmid: 23586467 |
|
(e) Dong, H.; Hou, M. F. Chin. J. Org. Chem. 2017, 37, 267. (in Chinese)
doi: 10.6023/cjoc201608014 pmid: 23586467 |
|
(董浩, 侯梅芳, 有机化学, 2017, 37, 267.)
doi: 10.6023/cjoc201608014 pmid: 23586467 |
|
(f) Wang, J.; Ren, J. M.; Zhu, Y. P.; Sun, X. Q.; Hu, P. F.; Mu, X.; Zeng, B. B. Tetrahedron Lett. 2023, 116, 154312.
doi: 10.1016/j.tetlet.2022.154312 pmid: 23586467 |
|
(g) Tian, Q. Q.; Gan, Z. J.; Wang, X. T.; Li, D.; Luo, W.; Wang, H. J.; Dai, Z. S.; Yuan, J. Y. Molecules 2018, 23, 2234.
doi: 10.3390/molecules23092234 pmid: 23586467 |
|
(h) Ye, D. F.; Chen, H.; Liu, Z. Y.; Lei, C. H. Chin. J. Org. Chem. 2021, 41, 1658. (in Chinese)
pmid: 23586467 |
|
(叶丹锋, 陈浩, 刘志园, 雷川虎, 有机化学, 2021, 41, 1658.)
doi: 10.6023/cjoc202009048 pmid: 23586467 |
|
(i) Lanigan, R. M.; Starkov, P.; Sheppard, T. D. J. Org. Chem. 2013, 78, 4512.
doi: 10.1021/jo400509n pmid: 23586467 |
|
[2] |
(a) Walsh, C. T.; O’Brien, R. V.; Khosla, C. Angew. Chem., Int. Ed. 2013, 52, 7098.
doi: 10.1002/anie.v52.28 pmid: 24918541 |
(b) Todorovic, M.; Perrin, D. M. Pept. Sci. 2020, 17, 3895.
pmid: 24918541 |
|
(c) Sheng, G.Z.; Zhang, W. Chin. J. Org. Chem. 2013, 33, 2271. (in Chinese)
doi: 10.6023/cjoc201305048 pmid: 24918541 |
|
(盛国柱, 张炜, 有机化学, 2013, 33, 2271.)
doi: 10.6023/cjoc201305048 pmid: 24918541 |
|
(d) Chapman, R. S. L.; Lawrence, R.; Williams, J. M. J.; Bull, S. D. Org. Lett. 2017, 19, 4908.
doi: 10.1021/acs.orglett.7b02382 pmid: 24918541 |
|
(e) Gerack, C. J.; McElwee-White, L. Molecules 2014, 19, 7689.
doi: 10.3390/molecules19067689 pmid: 24918541 |
|
[3] |
(a) Li, Z. Y.; Chen, Y. Z.; Wan, N.W. Chin. J. Synth. Chem. 2022, 30, 419. (in Chinese)
|
(李正一, 陈永正, 万南微, 合成化学, 2022, 30, 419.)
|
|
(b) Chen, J.; Jia, J.; Guo, Z.; Zhang, J.; Xie, M. Tetrahedron Lett. 2019, 60, 1426.
doi: 10.1016/j.tetlet.2019.04.040 |
|
(c) Tan, C.; Liu, Y. G.; Liu, X. Y.; Jia, H. X.; Xu, K.; Huang, S. H.; Wang, J. W.; Tan, J. J. Org. Chem. Front. 2020, 7, 780.
doi: 10.1039/C9QO01489F |
|
[4] |
(a) Reddy, T. N.; Beatriz, A.; Rao, V. J.; Lima, D. P. Chem.-Asian J. 2019, 14, 344.
doi: 10.1002/asia.v14.3 pmid: 24430887 |
(b) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714.
doi: 10.1039/c3cs60345h pmid: 24430887 |
|
(c) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
doi: 10.1038/nature10702 pmid: 24430887 |
|
(d) Yan, Y. Z.; Niu, B.; Xu, K.; Yu, J. H.; Zhi, H. H.; Liu, Y. Q. Adv. Synth. Catal. 2016, 358, 212.
doi: 10.1002/adsc.v358.2 pmid: 24430887 |
|
[5] |
Hinz, B.; Cheremina, O.; Brune, K. FASEB J. 2008, 22, 383.
doi: 10.1096/fsb2.v22.2 |
[6] |
Perez-Aso, M.; Montesinos, M. C.; Mediero, A.; Wilder, T.; Schafer, P. H. Arthritis Res. Ther. 2015, 17, 249.
doi: 10.1186/s13075-015-0771-6 pmid: 26370839 |
[7] |
Abe, H.; Kikuchi, S.; Hayakawa, K.; Iida, T.; Nagahashi, N.; Maeda, K. ACS Med. Chem. Lett. 2011, 2, 320.
doi: 10.1021/ml200004g |
[8] |
Primiano, G.; Vollono, C.; Dono, F.; Servidei, S. Epilepsy Res. 2018, 139, 135.
doi: S0920-1211(17)30502-8 pmid: 29223780 |
[9] |
Mahesh, S.; Tang, K. C.; Raj, M. Molecules 2018, 23, 2615.
doi: 10.3390/molecules23102615 |
[10] |
Young, I. S.; Glass, A. L.; Cravillion, T.; Han, C.; Zhang, H.; Gosselin, F. Org. Lett. 2018, 20, 3902.
doi: 10.1021/acs.orglett.8b01483 pmid: 29944383 |
[11] |
Dander, J. E.; Baker, E. L.; Garg, N. K. Chem. Sci. 2017, 8, 6433.
doi: 10.1039/c7sc01980g pmid: 29163929 |
[12] |
Pelletier, G.; Powell, D. A. Org. Lett. 2006, 8, 6031.
doi: 10.1021/ol062514u |
[13] |
Shekhar, A. C.; Kumar, A. R.; Sathaiah, G.; Paul, V. L.; Sridhar, M.; Rao, P. S. Tetrahedron Lett. 2009, 50, 7099.
doi: 10.1016/j.tetlet.2009.10.006 |
[14] |
(a) Li, Y.; Jia, F.; Li, Z. Chem.-Eur. J. 2013, 19, 82.
doi: 10.1002/chem.v19.1 pmid: 24758779 |
(b) Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sanchez, D. J. Org. Chem. 2014, 79, 4544.
doi: 10.1021/jo500562w pmid: 24758779 |
|
[15] |
Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994, 59, 4035.
doi: 10.1021/jo00094a004 |
[16] |
Jiang, H.; Hu, Z.; Gan, C.; Sun, B.; Kong, S.; Bian, F. J. Mol. Catal. 2021, 504, 111490.
|
[17] |
Shah, N.; Gravel, E.; Jawale, D. V.; Doris, E.; Namboothiri, I. N. N. ChemCatChem 2014, 6, 2201.
doi: 10.1002/cctc.v6.8 |
[18] |
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
doi: 10.1002/anie.v54.21 |
[19] |
Lenstra, D. C.; Nguyen, D. T.; Mecinović, J. Tetrahedron, 2015, 71, 5547.
doi: 10.1016/j.tet.2015.06.066 |
[20] |
Kong, X.; Xu, B. Org. Lett. 2018, 20, 4495.
doi: 10.1021/acs.orglett.8b01770 |
[21] |
Pathare, S. P.; Jain, A. K. H.; Akamanchi, K. G. RSC Adv. 2013, 21, 7697.
|
[22] |
Rasheed, S.; Rao, D. N.; Reddy, A. S.; Shankar, R.; Das, P. RSC Adv. 2015, 5, 10567.
doi: 10.1039/C4RA16571C |
[23] |
Karami, B.; Farahi, M.; Pam, F. Tetrahedron Lett. 2014, 55, 6292.
doi: 10.1016/j.tetlet.2014.09.114 |
[24] |
Allen, C. L.; Atkinson, B. N.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51, 1383.
doi: 10.1002/anie.v51.6 |
[25] |
Laconde, G.; Amblard, M.; Martinez, J. Eur. J. Org. Chem. 2019, 2019, 85.
doi: 10.1002/ejoc.v2019.1 |
[26] |
Sonawane, R. B.; Rasal, N. K.; Jagtap, S. V. Org. Lett. 2017, 19, 2078.
doi: 10.1021/acs.orglett.7b00660 pmid: 28375017 |
[27] |
Sonawane, R. B.; Rasal, N. K.; Bhange, D. S.; Jagtap, S. V. ChemCatChem 2018, 10, 3907.
doi: 10.1002/cctc.v10.17 |
[28] |
(a) Kumar, V.; Dhawan, S.; Girase, P. S.; Singh, P.; Karpoormath, R. Eur. J. Org. Chem. 2021, 2021, 5627.
doi: 10.1002/ejoc.v2021.41 |
(b) Girase, P. S.; Kumar, V.; Dhawan, S.; Karpoormath, R. ChemistrySelect 2022, 7, 3237.
|
|
(c) Acosta-Guzmán, P.; Mateus-Gómez, A.; Gamba-Sánchez, D. Molecules 2018, 23, 2382.
doi: 10.3390/molecules23092382 |
|
(d) Yan, Y. Z.; Cui, C.; Li, Z. Chin. J. Org. Chem. 2018, 38, 2501. (in Chinese)
doi: 10.6023/cjoc201805016 |
|
(闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501.)
doi: 10.6023/cjoc201805016 |
|
[29] |
Rao, S. N.; Mohan, D. C.; Adimurthy, S. Tetrahedron 2016, 72, 4889.
doi: 10.1016/j.tet.2016.06.060 |
[30] |
Mahajan, S.; Slathia, N.; Kapoor, K. K. Tetrahedron Lett. 2020, 61, 151859.
doi: 10.1016/j.tetlet.2020.151859 |
[31] |
Zhou, Z. J.; Kweon, J.; Jung, H.; Kim, D.; Seo, S.; Chang, S. J. Am. Chem. Soc. 2022, 144, 9161.
doi: 10.1021/jacs.2c03343 |
[32] |
Lakshmi, V. M.; Hsu, F. F.; Davis, B. B.; Zenser, T. V. Chem. Res. Toxicol. 2001, 14, 312.
pmid: 11258981 |
[33] |
Wang, J. K.; Zong, Y. X.; Wang, X. C.; Hu, Y. L.; Yue, G. R. Chin. Chem. Lett. 2015, 26, 1376.
doi: 10.1016/j.cclet.2015.08.001 |
[1] | 曹同阳, 李玮, 王力竞. N-碘代丁二酰亚胺(NIS)参与的碘化反应最新研究进展[J]. 有机化学, 2024, 44(2): 508-524. |
[2] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[3] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
[4] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[5] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[6] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[7] | 张周, 郭钰, 羊静, 吴丹, 王佳昕, 洪欣玥, 蔡佩君, 荣良策. 电化学促进咪唑并[1,2-a]吡啶与二氯(溴)乙烷及碘仿的卤化反应[J]. 有机化学, 2023, 43(6): 2104-2109. |
[8] | 吕敏, 杨爱梅, 张昱, 孙建婷, 魏邦国. Fe(OTf)3催化含有N,O-缩醛结构硼酸酯的合成研究[J]. 有机化学, 2023, 43(5): 1777-1785. |
[9] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[10] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[11] | 刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635. |
[12] | 刘宁, 爨晓丹, 李慧, 段希焱. 烯胺酮α-官能团化反应的研究进展[J]. 有机化学, 2023, 43(2): 602-621. |
[13] | 刘浩然, 俞骏豪, 曹同阳, 齐林, 王力竞. N-碘代丁二酰亚胺促进烯基肟的串联氧叠氮化反应: 合成叠氮化异噁唑啉类化合物[J]. 有机化学, 2023, 43(12): 4220-4226. |
[14] | 王芳, 王磊. 基于N-亚硝基导向的芳烃C(sp2)—H键官能团化研究进展[J]. 有机化学, 2023, 43(12): 4157-4167. |
[15] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||