有机化学 ›› 2024, Vol. 44 ›› Issue (4): 1343-1347.DOI: 10.6023/cjoc202310020 上一篇 下一篇
研究简报
雍达明a,*(), 田杰a, 杨瑞洪a, 吴启超a, 张旭b,*()
收稿日期:
2023-10-23
修回日期:
2023-11-27
发布日期:
2023-12-15
基金资助:
Daming Yonga(), Jie Tiana, Ruihong Yanga, Qichao Wua, Xu Zhangb()
Received:
2023-10-23
Revised:
2023-11-27
Published:
2023-12-15
Contact:
E-mail: Supported by:
文章分享
氧化锆负载硒可以由易得的二氧化锆与硒氢化钠反应制备. 研究表明, 该材料可催化苯酚氧化, 制备对苯醌. 与传统硒催化氧化反应相比, 该反应无需使用化学氧化剂, 而是可以直接利用分子氧为氧化剂, 从而显著降低合成成本, 并且相对安全. 氧化锆负载硒是一种稳定的含硒材料, 可以反复多次回收利用而不会失活. 其卓越的催化氧化性能有望应用于工业.
雍达明, 田杰, 杨瑞洪, 吴启超, 张旭. 氧化锆负载硒催化苯酚氧化反应[J]. 有机化学, 2024, 44(4): 1343-1347.
Daming Yong, Jie Tian, Ruihong Yang, Qichao Wu, Xu Zhang. Se/ZrO2-Catalyzed Oxidation of Phenol[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1343-1347.
Entry | Catalyst | Yieldb/% of 2 |
---|---|---|
1 | (PhSe)2 | <5 |
2 | (c-C6H11Se)2 | 8 |
3 | [3,5-(CF3)2C6H3Se]2 | 7 |
4 | (PhSe)2+CuCl2 (1∶1)c | 30 |
5 | (PhSe)2+FeCl3 (1∶1)c | 22 |
6 | Se/Ag[ | 29 |
7 | Se/Fe3O4[ | 38 |
8 | Se/CuO | 41 |
9 | Se/TiO2 | 36 |
10 | Se/Al2O3 | 29 |
11 | Se/SiO2 | 22 |
12 | Se/ZrO2 | 48 |
Entry | Catalyst | Yieldb/% of 2 |
---|---|---|
1 | (PhSe)2 | <5 |
2 | (c-C6H11Se)2 | 8 |
3 | [3,5-(CF3)2C6H3Se]2 | 7 |
4 | (PhSe)2+CuCl2 (1∶1)c | 30 |
5 | (PhSe)2+FeCl3 (1∶1)c | 22 |
6 | Se/Ag[ | 29 |
7 | Se/Fe3O4[ | 38 |
8 | Se/CuO | 41 |
9 | Se/TiO2 | 36 |
10 | Se/Al2O3 | 29 |
11 | Se/SiO2 | 22 |
12 | Se/ZrO2 | 48 |
Entry | Se amountb x/mol% | Solvent | T/℃ | t/h | Yieldc/% |
---|---|---|---|---|---|
1 | 3 | THF | 60 | 16 | 48 |
2 | 2 | THF | 60 | 16 | 49 |
3 | 1 | THF | 60 | 16 | 32 |
4 | 2 | Toluene | 60 | 16 | 23 |
5 | 2 | Cyclohexane | 60 | 16 | 20 |
6 | 2 | MeCN | 60 | 16 | 36 |
7 | 2 | DMF | 60 | 16 | 33 |
8 | 2 | 1,4-Dioxane | 60 | 16 | 54 |
9 | 2 | EtOAc | 60 | 16 | 56 |
10 | 2 | EtOAc | 70 | 16 | 60 |
11 | 2 | EtOAc | Reflux | 16 | 65 |
12 | 2 | EtOAc | Reflux | 18 | 74 |
13 | 2 | EtOAc | Reflux | 20 | 82 |
14 | 2 | EtOAc | Reflux | 22 | 83 |
Entry | Se amountb x/mol% | Solvent | T/℃ | t/h | Yieldc/% |
---|---|---|---|---|---|
1 | 3 | THF | 60 | 16 | 48 |
2 | 2 | THF | 60 | 16 | 49 |
3 | 1 | THF | 60 | 16 | 32 |
4 | 2 | Toluene | 60 | 16 | 23 |
5 | 2 | Cyclohexane | 60 | 16 | 20 |
6 | 2 | MeCN | 60 | 16 | 36 |
7 | 2 | DMF | 60 | 16 | 33 |
8 | 2 | 1,4-Dioxane | 60 | 16 | 54 |
9 | 2 | EtOAc | 60 | 16 | 56 |
10 | 2 | EtOAc | 70 | 16 | 60 |
11 | 2 | EtOAc | Reflux | 16 | 65 |
12 | 2 | EtOAc | Reflux | 18 | 74 |
13 | 2 | EtOAc | Reflux | 20 | 82 |
14 | 2 | EtOAc | Reflux | 22 | 83 |
[1] |
(a) Baidya M.; Dutta J.; De Sarkar S. Org. Lett. 2023, 25, 3812.
doi: 10.1021/acs.orglett.3c01355 |
(b) Li Lai, Peng X.; Lu J.; Jiang X. Org. Chem. Front. 2021, 8, 664.
doi: 10.1039/D0QO01267J |
|
(c) Li Y.; Wang Y.; Yang T.; Lin Z.; Jiang X. Green Chem. 2021, 23, 2986.
doi: 10.1039/D0GC04407E |
|
(d) Li L.; Wu J.; Wei L.; Lu J.; Jiang X. J. Org. Chem. 2021, 86, 446.
doi: 10.1021/acs.joc.0c02179 |
|
(e) Liu M.; Zhang X.; Chu S.; Ge Y.; Huang T.; Liu Y.; Yu L. Chin. Chem. Lett. 2022, 33, 205.
doi: 10.1016/j.cclet.2021.05.061 |
|
(f) Wang X.; Meng J.; Zhao D.; Tang S.; Sun K. Chin. Chem. Lett. 2023, 34, 107736.
doi: 10.1016/j.cclet.2022.08.016 |
|
(g) Ji H.-T.; Wang K.-L.; Ouyang W.-T.; Luo Q.-X.; Li H.-X.; He W.-M. Green Chem. 2023, 25, 798.
|
|
[2] |
Hou W.; Xu H. J. Med. Chem. 2022, 65, 4436.
doi: 10.1021/acs.jmedchem.1c01859 |
[3] |
(a) Pacuła-Miszewska A. J.; Sancineto L. In Organochalcogen Compounds, Eds.: Lenardão, E. J.; Santi, C.; Perin, G.; Alves, D., Elsevier, Amsterdam, 2022, p. 219.
|
(b) Liu J.; Cai Y.; Pang H.; Cao B.; Luo C.; Hu Z.; Xiao C.; Zhang H.; Lv F.; Cao Y.; Yu L. Chin. Chem. Lett. 2022, 33, 4061.
doi: 10.1016/j.cclet.2021.12.068 |
|
(c) Zou N.; Lan J.-X.; Yan G.-G.; Liang C.; Su G.-F.; Mo D.-L. Org. Lett. 2020, 22, 8446.
doi: 10.1021/acs.orglett.0c02947 |
|
[4] |
(a) Hossain M. M.; Huang W.-K.; Chen H.-J.; Wang P.-H.; Shyu S.-G. Green Chem. 2014, 16, 3013.
doi: 10.1039/C3GC42624F |
(b) Dong X.-Y.; Li Z.-L.; Gu Q.-S.; Liu X.-Y. J. Am. Chem. Soc. 2022, 144, 17319.
doi: 10.1021/jacs.2c06718 |
|
(c) Zhu T.; Zhang Y.; Chen Y.; Liu J.-L.; Song X.-L. Rare Metals 2022, 41, 1677.
doi: 10.1007/s12598-021-01920-z |
|
(d) Chen Y.; Chen C.; Liu Y.; Yu L. Chin. Chem. Lett. 2023, 34, 108489.
doi: 10.1016/j.cclet.2023.108489 |
|
[5] |
(a) Rayman M. P. Lancet 2012, 379, 1256.
doi: 10.1016/S0140-6736(11)61452-9 |
(b) Wan X.; Ju G.; Xu L.; Yang H.; Wang Z. Biol. Trace Elem. Res. 2020, 198, 253.
doi: 10.1007/s12011-020-02052-8 |
|
(c) Chen N.; Zhao C.; Zhang T. Food Biosci. 2021, 40, 100875.
doi: 10.1016/j.fbio.2020.100875 |
|
(d) Ding W.; Wang S.; Gu J.; Yu L. Chin. Chem. Lett. 2023, 34, 108043.
doi: 10.1016/j.cclet.2022.108043 |
|
(e) Gao X. L. Front. Nutr. 2023, 10, 1269204.
doi: 10.3389/fnut.2023.1269204 |
|
(f) Xian L.; Li Q.; Li T.; Yu L. Chin. Chem. Lett. 2023, 34, 107878.
doi: 10.1016/j.cclet.2022.107878 |
|
(g) Li J.; Shi Q.; Xue Y.; Zheng M.; Liu L.; Geng T.; Gong D.; Zhao M. Chin. Chem. Lett. 2024, 35, 109239.
doi: 10.1016/j.cclet.2023.109239 |
|
[6] |
(a) Chen W.; Wang Y.; Mi X.; Luo S. Org. Lett. 2019, 21, 8178.
doi: 10.1021/acs.orglett.9b02636 |
(b) Du B.; Jin B.; Sun P. Org. Lett. 2014, 16, 3032.
doi: 10.1021/ol5011449 |
|
[7] |
(a) Chen C.; Cao Z.; Zhang X.; Li Y.; Yu L.; Jiang X. Chin. J. Chem. 2020, 38, 1045.
doi: 10.1002/cjoc.v38.10 |
(b) Cao Z.; Deng X.; Chen C.; Liu Y.; Yu L.; Jiang X. React. Chem. Eng. 2021, 6, 454.
doi: 10.1039/D0RE00471E |
|
(c) Li X.; Hua H.; Liu Y.; Yu L. Org. Lett. 2023, 25, 6720.
doi: 10.1021/acs.orglett.3c02569 |
|
[8] |
Chen X.; Mao J.; Liu C.; Chen C.; Cao H.; Yu L. Chin. Chem. Lett. 2020, 31, 3205.
doi: 10.1016/j.cclet.2020.07.031 |
[9] |
(a) Mitchell L. J.; Moody C. J. J. Org. Chem. 2014, 79, 11091.
doi: 10.1021/jo5020917 pmid: 25322456 |
(b) Coupan R.; Torre J.-P.; Dicharry C.; Hemati M.; Plantier F. Ind. Eng. Chem. Res. 2018, 57, 8172.
doi: 10.1021/acs.iecr.8b01462 pmid: 25322456 |
|
(c) Sun Q.; He T.; Li Y. J. Mater. Chem. A 2020, 8, 1687.
doi: 10.1039/C9TA09447D pmid: 25322456 |
|
[10] |
Wang F.; Xu L.; Sun C.; Xu Q.; Huang J.; Yu L. Chin. J. Org. Chem. 2017, 37, 2115. (in Chinese)
doi: 10.6023/cjoc201701026 |
(王芳, 徐林, 孙诚, 徐清, 黄杰军, 俞磊, 有机化学, 2017, 37, 2115.)
doi: 10.6023/cjoc201701026 |
|
[11] |
Liu F.; Zhan J.; Sun Y.; Jing X. Chin. J. Org. Chem. 2021, 41, 2099. (in Chinese)
|
(刘峰, 詹杰, 孙扬阳, 景崤壁, 有机化学, 2021, 41, 2099.)
doi: 10.6023/cjoc202011012 |
|
[12] |
(a) Li W.; Wang F.; Shi Y.; Yu L. Chin. Chem. Lett. 2023, 34, 107505.
doi: 10.1016/j.cclet.2022.05.019 |
(b) Xie P.; Xue C.; Du D.; Shi S. Org. Biomol. Chem. 2021, 19, 6781.
doi: 10.1039/D1OB01002F |
|
(c) Sun Q.; Zhang Y.-Y.; Sun J.; Han Y.; Jia X.; Yan C.-G. J. Org. Chem. 2018, 83, 6640.
doi: 10.1021/acs.joc.8b00928 |
|
[13] |
Lee C.-Y.; Kim S.; Lee K.-B.; Yoo Y.-C.; Ryu S.-Y.; Song K.-S. Arch. Pharm. Res. 2003, 26, 367.
doi: 10.1007/BF02976693 |
[14] |
(a) Schweitzer-Chaput B.; Sud A.; Pintér Á.; Dehn S.; Schulze P.; Klussmann M. Angew. Chem., Int. Ed. 2013, 52, 13228.
doi: 10.1002/anie.201306752 pmid: 30102546 |
(b) Usov E. V.; Butov A. A.; Chukhno V. I.; Klimonov I. A.; Kudashov I. G.; Zhdanov V. S.; Pribaturin N. A.; Mosunova N. A.; Strizhov V. F. Atom. Energy 2018, 124, 287.
doi: 10.1007/s10512-018-0412-7 pmid: 30102546 |
|
(c) Lippincott D. J.; Trejo-Soto P. J.; Gallou F.; Lipshutz B. H. Org. Lett. 2018, 20, 5094.
doi: 10.1021/acs.orglett.8b01883 pmid: 30102546 |
|
(d) Yang Y.-Z.; Lv G.-F.; Hu M.; Li Y.; Li J.-H. Chin. Chem. Lett. 2023, 34, 108590.
doi: 10.1016/j.cclet.2023.108590 pmid: 30102546 |
|
[15] |
(a) Eşsiz S.; Bozkaya U. Org. Biomol. Chem. 2021, 19, 9483.
doi: 10.1039/D1OB01607E |
(b) He K.; Zhang T.; Zhang S.; Sun Z.; Zhang Y.; Yuan Y.; Jia X. Org. Lett. 2019, 21, 5030.
doi: 10.1021/acs.orglett.9b01574 |
|
(c) Chen Y.; Zhang S.; Li T.; Ma Q.; Yuan Y.; Jia X. Chem. Eur. J. 2024, 30, e202303151.
doi: 10.1002/chem.v30.3 |
|
[16] |
Das T. N. J. Phys. Chem. A 2005, 109, 3344.
doi: 10.1021/jp050015p |
[17] |
Jin L.; Lü M.; Zhao C.; Min S.; Zhang T.; Zhang Q. J. Phys. Org. Chem. 2017, 30, e3691.
doi: 10.1002/poc.v30.11 |
[18] |
Wei Y.; Zou Q.; Ye P.; Wang M.; Li X.; Xu A. Chemosphere 2018, 208, 358.
doi: S0045-6535(18)31079-8 pmid: 29885501 |
[19] |
Brown K. C.; Corbett J. F. J. Org. Chem. 1979, 44, 25.
doi: 10.1021/jo01315a007 |
[1] | 鞠国栋, 周冠宇, 赵应声. 三异丙基硅烷(TIPS)保护苯酚的无过渡金属催化区域选择性硫氰化反应[J]. 有机化学, 2024, 44(4): 1327-1336. |
[2] | 张莹珍, 江丹丹, 李娟华, 王菁菁, 刘昆明, 刘晋彪. 高选择性硒代半胱氨酸荧光探针的构建策略及成像[J]. 有机化学, 2024, 44(1): 41-53. |
[3] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[4] | 徐忠荣, 万结平, 刘云云. 基于热、光以及电化学过程的无过渡金属碳-氢键硫氰化和硒氰化反应[J]. 有机化学, 2023, 43(7): 2425-2446. |
[5] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[6] | 胡朝明, 吴纪红, 吴晶晶, 吴范宏. 直接三氟甲硒基化反应研究进展[J]. 有机化学, 2023, 43(1): 36-56. |
[7] | 刘浩阳, 孙爽爽, 马献力, 陈艳艳, 徐燕丽. 可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物[J]. 有机化学, 2022, 42(9): 2867-2876. |
[8] | 曹廷舒, 魏向阳, 罗敏, 汪逸飞, 潘子俊, 徐程, 殷国栋. 醋酸碘苯促进的脱氢氧化反应合成2-硫芳(烷)基苯酚及10H-吩噻嗪[J]. 有机化学, 2022, 42(7): 2079-2088. |
[9] | 袁飞, 赵艳, 郭青松, 尹福丹, 赖金荣, 念倍芳, 张明, 汤峨. 乙烯基硒盐参与的串联反应合成1-[1-(胺基)环丙基]酮化合物[J]. 有机化学, 2022, 42(6): 1759-1769. |
[10] | 周文见, 肖欣蕊, 刘永红, 张旭. 磁性Se/Fe/PCN催化烯烃在氧气中的氧化裂解反应[J]. 有机化学, 2022, 42(6): 1849-1855. |
[11] | 殷一樊, 李晨, 孙凯, 刘颖杰, 王薪. 烯烃自由基胺硒化: β-氨基硒醚的简易合成[J]. 有机化学, 2022, 42(5): 1431-1437. |
[12] | 王利敏, 李柯, 张万轩. 有机硒催化肟转化为腈或酮[J]. 有机化学, 2022, 42(4): 1235-1240. |
[13] | 左鸿华, 钟芳锐. 亚稳醌类分子的活性调控与仿生催化反应[J]. 有机化学, 2022, 42(3): 665-678. |
[14] | 李珊, 曹原, 蒋绿齐. 烷基、芳基和氟烷基硒化反应的研究进展[J]. 有机化学, 2022, 42(2): 434-457. |
[15] | 于婷婷, 宋冬雪, 许颖, 刘冰, 陈宁, 刘颖杰. 硫/硒代磺酸酯作为自由基试剂的应用研究[J]. 有机化学, 2022, 42(12): 4202-4219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||