有机化学 ›› 2024, Vol. 44 ›› Issue (4): 1218-1225.DOI: 10.6023/cjoc202310023 上一篇 下一篇
研究论文
收稿日期:
2023-10-24
修回日期:
2023-12-08
发布日期:
2023-12-28
基金资助:
Miao Feng, Lanlan Lü(), Yijia Guo, Jianquan Liu, Xiangshan Wang()
Received:
2023-10-24
Revised:
2023-12-08
Published:
2023-12-28
Contact:
E-mail: Supported by:
文章分享
2-亚甲基-2,3-二氢苯并呋喃衍生物作为多种天然产物及药物的核心骨架之一, 寻找由简便易得原料有效合成2-亚甲基-2,3-二氢苯并呋喃的新方法具有重要的意义. 开发了一种新的银催化邻羟基苯基炔丙醇的5-exo-dig环化反应, 为2-亚甲基-2,3-二氢苯并呋喃的构筑提供了一种高效、模块化的方法. 在室温条件下, 反应仅需使用2 mol%量的银催化剂和5 mol%的异腈为配体, 具有条件温和、操作简单和高效等优点.
冯淼, 吕兰兰, 郭一佳, 刘建全, 王香善. 银催化邻羟基苯基炔丙醇5-exo-dig环化反应构筑2-亚甲基-2,3-二氢苯并呋喃-3-醇[J]. 有机化学, 2024, 44(4): 1218-1225.
Miao Feng, Lanlan Lü, Yijia Guo, Jianquan Liu, Xiangshan Wang. Silver-Catalyzed 5-Exo-dig Cyclization Reaction of ortho-Hydroxyphenylpropargyl Alcohols to 2-Methylene-2,3-dihydrobenzofuran[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1218-1225.
Entry | [M] | Solvent | Ligand | Temp./℃ | Yieldb/% | |
---|---|---|---|---|---|---|
1 | Ag2CO3 | 1,4-Dioxane | L1 | 40 | 75 | |
2 | Ag2CO3 | DMF | L1 | 40 | 64 | |
3 | Ag2CO3 | DMSO | L1 | 40 | 27 | |
4 | Ag2CO3 | Toluene | L1 | 40 | 49 | |
5 | Ag2CO3 | MeCN | L1 | 40 | 38 | |
6 | Ag2CO3 | DCE | L1 | 40 | 58 | |
7 | AgOAc | 1,4-Dioxane | L1 | 40 | 60 | |
8 | AgF | 1,4-Dioxane | L1 | 40 | 45 | |
9 | Ag2O | 1,4-Dioxane | L1 | 40 | 61 | |
10 | AgOTf | 1,4-Dioxane | L1 | 40 | 0 | |
11 | Ag3PO4 | 1,4-Dioxane | L1 | 40 | 0 | |
12 | AgBF4 | 1,4-Dioxane | L1 | 40 | 0 | |
13 | Pd(OAc)2 | 1,4-Dioxane | L1 | 40 | 0 | |
14 | CuI | 1,4-Dioxane | L1 | 40 | 0 | |
15 | Ag2CO3 | 1,4-Dioxane | L2 | 40 | 28 | |
16 | Ag2CO3 | 1,4-Dioxane | L3 | 40 | 36 | |
17 | Ag2CO3 | 1,4-Dioxane | L4 | 40 | 43 | |
18 | Ag2CO3 | 1,4-Dioxane | L1 | r.t. | 83 | |
19 | Ag2CO3 | 1,4-Dioxane | L1 | 60 | 71 | |
20c | — | 1,4-Dioxane | L1 | 60 | 0 | |
21d | Ag2CO3 | 1,4-Dioxane | — | r.t. | 0 | |
22e | Ag2CO3 | 1,4-Dioxane | L1 | r.t. | 23 | |
23e | Ag2CO3 | 1,4-Dioxane | L5 | r.t. | 90 | |
24e | Ag2CO3 | 1,4-Dioxane | L6 | r.t. | 86 |
Entry | [M] | Solvent | Ligand | Temp./℃ | Yieldb/% | |
---|---|---|---|---|---|---|
1 | Ag2CO3 | 1,4-Dioxane | L1 | 40 | 75 | |
2 | Ag2CO3 | DMF | L1 | 40 | 64 | |
3 | Ag2CO3 | DMSO | L1 | 40 | 27 | |
4 | Ag2CO3 | Toluene | L1 | 40 | 49 | |
5 | Ag2CO3 | MeCN | L1 | 40 | 38 | |
6 | Ag2CO3 | DCE | L1 | 40 | 58 | |
7 | AgOAc | 1,4-Dioxane | L1 | 40 | 60 | |
8 | AgF | 1,4-Dioxane | L1 | 40 | 45 | |
9 | Ag2O | 1,4-Dioxane | L1 | 40 | 61 | |
10 | AgOTf | 1,4-Dioxane | L1 | 40 | 0 | |
11 | Ag3PO4 | 1,4-Dioxane | L1 | 40 | 0 | |
12 | AgBF4 | 1,4-Dioxane | L1 | 40 | 0 | |
13 | Pd(OAc)2 | 1,4-Dioxane | L1 | 40 | 0 | |
14 | CuI | 1,4-Dioxane | L1 | 40 | 0 | |
15 | Ag2CO3 | 1,4-Dioxane | L2 | 40 | 28 | |
16 | Ag2CO3 | 1,4-Dioxane | L3 | 40 | 36 | |
17 | Ag2CO3 | 1,4-Dioxane | L4 | 40 | 43 | |
18 | Ag2CO3 | 1,4-Dioxane | L1 | r.t. | 83 | |
19 | Ag2CO3 | 1,4-Dioxane | L1 | 60 | 71 | |
20c | — | 1,4-Dioxane | L1 | 60 | 0 | |
21d | Ag2CO3 | 1,4-Dioxane | — | r.t. | 0 | |
22e | Ag2CO3 | 1,4-Dioxane | L1 | r.t. | 23 | |
23e | Ag2CO3 | 1,4-Dioxane | L5 | r.t. | 90 | |
24e | Ag2CO3 | 1,4-Dioxane | L6 | r.t. | 86 |
[1] |
Gartia Y.; Ramidi P.; Cheerla S.; Felton C. M.; Jones D. E.; Das B. C.; Ghosh A. J. Mol. Catal. A: Chem. 2014, 392, 253.
doi: 10.1016/j.molcata.2014.05.013 |
[2] |
Liu J.-T.; Simmons C. J.; Xie H.; Yang F.; Zhao X.-L.; Tang Y.; Tang W. Adv. Synth. Catal. 2017, 359, 693.
doi: 10.1002/adsc.v359.4 |
[3] |
Sharma U.; Naveen T.; Maji A.; Manna S.; Maiti D. Angew. Chem., Int. Ed. 2013, 52, 12669.
doi: 10.1002/anie.v52.48 |
[4] |
Santi M.; Ould D. M. C.; Wenz J.; Soltani Y.; Melen R. L.; Wirth T. Angew. Chem., Int. Ed. 2019, 58, 7861.
doi: 10.1002/anie.v58.23 |
[5] |
Iqbal N.; Iqbal N.; Maiti D.; Cho E. J. Angew. Chem., Int. Ed. 2019, 58, 15808.
doi: 10.1002/anie.v58.44 |
[6] |
Five C. L. Harv. Educ. Rev. 2011, 56, 395.
doi: 10.17763/haer.56.4.y34327062r03566u |
[7] |
Adole V. A.; Jagdale B. S.; Pawar T. B.; Sawant A. B. J. Chin. Chem. Soc. 2020, 67, 1763.
doi: 10.1002/jccs.v67.10 |
[8] |
Akgul Y. Y.; Anil H. Phytochemistry 2003, 63, 939.
doi: 10.1016/S0031-9422(03)00357-1 |
[9] |
Mendonça Pauletti P.; Araújo A. R.; Young M. C. M.; Giesbrecht A. M.; da Silva Bolzani V. Phytochemistry 2000, 55, 597.
pmid: 11130670 |
[10] |
Zhang X.; Beaudry C. M. J. Org. Chem. 2021, 86, 6931.
doi: 10.1021/acs.joc.1c00341 |
[11] |
Pang J.-Y.; Xu Z.-L. Chin. J. Org. Chem. 2005, 25, 25. (in Chinese)
doi: 10.1002/cjoc.v25:1 |
(庞冀燕, 许遵乐, 有机化学, 2005, 25, 25.)
|
|
[12] |
Chen C.; Li H.; Long Y.-Q. Bioorg. Med. Chem. Lett. 2016, 26, 5603.
doi: 10.1016/j.bmcl.2016.10.074 |
[13] |
Yamada K. Psychiatry Clin. Neurosci. 2017, 71, 147.
|
[14] |
Hinson J.; Achenbach H.; Terreri B.; Boules M. Neuroga- stroenterol. Motil. 2023, 35, e14563.
|
[15] |
Pollack M. H.; Marzol P. C. CNS Spectrums 2000, 5, 23.
pmid: 17545962 |
[16] |
Chapple Christopher R. J. Urol. 2004, 171, 130.
|
[17] |
Gartia Y.; Ramidi P.; Jones D. E.; Pulla S.; Ghosh A. J. C. L. Catal. Lett. 2014, 144, 507.
doi: 10.1007/s10562-013-1170-8 |
[18] |
Rodríguez-Fernández A.; Di Iorio J. R.; Paris C.; Boronat M.; Corma A.; Román-Leshkov Y.; Moliner M. Chem. Sci. 2020, 11, 10225.
doi: 10.1039/d0sc03809a pmid: 34094288 |
[19] |
Yu M.; Lin M.; Han C.; Zhu L.; Li C.-J.; Yao X. Tetrahedron Lett. 2010, 51, 6722.
doi: 10.1016/j.tetlet.2010.10.065 |
[20] |
Li X.; Xue J.; Chen R.; Li Y. Synlett 2012, 23, 1043.
doi: 10.1055/s-0031-1290767 |
[21] |
Thomas A. M.; Asha S.; Menon R.; Anilkumar G. Chemistry- Select 2019, 4, 5544.
|
[22] |
Idris I.; Derridj F.; Soulé J.-F.; Doucet H. Adv. Synth. Catal. 2017, 359, 2448.
doi: 10.1002/adsc.v359.14 |
[23] |
Ge X.; Fang X.; Miao R.-G.; Qi X.; Wu X.-F. J. Catal. 2023, 115166.
|
[24] |
Hashmi A. S. K.; Yang W.; Rominger F. Angew. Chem., Int. Ed. 2011, 50, 5762.
doi: 10.1002/anie.v50.25 |
[25] |
Yang W.; Liu Y.; Zhang S.; Cai Q. Angew. Chem., Int. Ed. 2015, 54, 8805.
doi: 10.1002/anie.v54.30 |
[26] |
Han Z.; Zhang L.; Li Z.; Fan R. Angew. Chem., Int. Ed. 2014, 53, 6805.
doi: 10.1002/anie.v53.26 |
[27] |
Kuninobu Y.; Nishina Y.; Nakagawa C.; Takai K. J. Am. Chem. Soc. 2006, 128, 12376.
doi: 10.1021/ja065643e |
[28] |
Zhu D.-X.; Liu J.-G.; Xu M.-H. J. Am. Chem. Soc. 2021, 143, 8583.
doi: 10.1021/jacs.1c03498 |
[29] |
Pannilawithana N.; Pudasaini B.; Baik M.-H.; Yi C. S. J. Am. Chem. Soc. 2021, 143, 13428.
doi: 10.1021/jacs.1c06887 pmid: 34428913 |
[30] |
Su Y.; Zhao X.; Huo X.; Cao G.; Ling Q.; Zhao X. Chin. J. Org. Chem. 2022, 42, 2605. (in Chinese)
doi: 10.6023/cjoc202203037 |
(赵晓正, 凌琴琴, 曹桂妍, 火星, 赵小龙, 苏瀛鹏, 有机化学, 2022, 42, 2605.)
doi: 10.6023/cjoc202203037 |
|
[31] |
Lin M.; Yu M.; Han C.; Li C.-J.; Yao X. Synth. Commun. 2011, 41, 3228.
doi: 10.1080/00397911.2010.517613 |
[32] |
Harkat H.; Blanc A.; Weibel J.-M.; Pale P. J. Org. Chem. 2008, 73, 1620.
doi: 10.1021/jo702197b |
[33] |
Yu M.; Skouta R.; Zhou L.; Jiang H.-f.; Yao X.; Li C.-J. J. Org. Chem. 2009, 74, 3378.
doi: 10.1021/jo900079u |
[34] |
Zhang M.; Yang J.; Xu Q.; Dong C.; Han L. B.; Shen R. Adv. Synth. Catal. 2018, 360, 334.
doi: 10.1002/adsc.v360.2 |
[35] |
Kanazawa C.; Kamijo S.; Yamamoto Y. J. Am. Chem. Soc. 2006, 128, 10662.
doi: 10.1021/ja0617439 |
[36] |
Grigg R.; Lansdell M. I.; Thornton-Pett M. Tetrahedron. 1999, 55, 2025.
doi: 10.1016/S0040-4020(98)01216-2 |
[37] |
Liu J.; Liu Z.; Liao P.; Zhang L.; Tu T.; Bi X. Angew. Chem., Int. Ed. 2015, 54, 10618.
doi: 10.1002/anie.v54.36 |
[38] |
Tong S.; Wang Q.; Wang M.-X.; Zhu J. Angew. Chem., Int. Ed. 2015, 54, 1309.
|
[39] |
Liu J.; Fang Z.; Zhang Q.; Liu Q.; Bi X. Angew. Chem., nt. Ed. 2013, 52, 6953.
|
[40] |
Gao M.; He C.; Chen H.; Bai R.; Cheng B.; Lei A. Angew. Chem., nt. Ed. 2013, 52, 6958.
|
[41] |
Badavath V. N.; Nath C.; Ganta N. M.; Ucar G.; Sinha B. N.; Jayaprakash V. Chin. Chem. Lett. 2017, 28, 1528.
doi: 10.1016/j.cclet.2017.02.009 |
[1] | 李晓勇, 黄丹凤, 周玉秀, 刘小康, 王克虎, 王君娇, 胡雨来. 二氟甲基溴代腙与β-(N,N-二甲氨基)烯酮/丙烯酸酯/丙烯酰胺的[3+2]环化反应研究[J]. 有机化学, 2024, 44(4): 1226-1239. |
[2] | 高燊原, 诸昊穹, 金巧玲, 金露儿, 王晓钟, 戴立言. 三氟甲硫基自由基引发涉及烯烃、AgSCF3和喹喔啉酮的三组分反应[J]. 有机化学, 2024, 44(4): 1264-1275. |
[3] | 吴际伟, 何俊, 王晶晶, 李丽霞, 徐采玉, 周洁, 李子荣, 许华建. 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024, 44(3): 972-980. |
[4] | 周兰, 何红, 杨德巧, 侯中伟, 王磊. N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024, 44(3): 981-988. |
[5] | 杨帆, 方婷, 杨桂春, 高梦. 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024, 44(3): 1021-1030. |
[6] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[7] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[8] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[9] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[10] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
[11] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[12] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[13] | 丁俊, 史啸坤, 郝宇, 白贺元, 张书宇. 银催化的β,γ-不饱和酰胺的不对称γ-胺化反应[J]. 有机化学, 2023, 43(8): 2946-2952. |
[14] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[15] | 蔡荣斌, 李冰, 周琪, 朱隆懿, 罗军. 4,8,9,10-四官能化的2-氮杂金刚烷及其2-氮杂原金刚烷骨架异构体的合成[J]. 有机化学, 2023, 43(6): 2217-2225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||