有机化学 ›› 2024, Vol. 44 ›› Issue (3): 966-971.DOI: 10.6023/cjoc202310029 上一篇 下一篇
研究论文
陈红斌, 杨思佳, 叶智鹏, 陈凯*(), 向皞月*(), 阳华*()
收稿日期:
2023-10-30
修回日期:
2023-12-28
发布日期:
2024-04-02
作者简介:
共同第一作者
基金资助:
Hongbing Chen, Sijia Yang, Zhipeng Ye, Kai Chen(), Haoyue Xiang(), Hua Yang()
Received:
2023-10-30
Revised:
2023-12-28
Published:
2024-04-02
Contact:
*E-mail: hyangchem@csu.edu.cn; xianghaoyue@csu.edu.cn; kaichen@csu.edu.cn
About author:
These authors contributed equally to this work.
Supported by:
文章分享
以路易斯碱-硼烷络合物(LB-BH3)为氢供体, 开发了一种通用的、直接的喹啉电化学还原策略, 从而快速获得多种具有生物活性的1,2,3,4-四氢喹啉类化合物. 此外, 该方法还被成功地应用于其他双键的还原, 包括C=O, N=N和 C=C. 该方法具有操作简单、反应条件温和及底物范围广等特点.
陈红斌, 杨思佳, 叶智鹏, 陈凯, 向皞月, 阳华. 以路易斯碱硼烷为氢供体电催化还原喹啉及酮[J]. 有机化学, 2024, 44(3): 966-971.
Hongbing Chen, Sijia Yang, Zhipeng Ye, Kai Chen, Haoyue Xiang, Hua Yang. Electrocatalytic Reduction of Quinolines and Ketones by Using Lewis Base-Ligated Borane as a Hydrogen Donor[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 966-971.
Entry | Solvent | I/mA | LB-BH3 | +/- | T/℃ | Yield/% |
---|---|---|---|---|---|---|
1 | DMSO | 8 | LB1 | Zn/Pt | 30 | Trace |
2 | CDCl3 | 8 | LB1 | Zn/Pt | 30 | Trace |
3 | THF | 8 | LB1 | Zn/Pt | 30 | 51 |
4 | PhMe | 8 | LB1 | Zn/Pt | 30 | 30 |
5 | MeCN | 8 | LB1 | Zn/Pt | 30 | 61 |
6 | MeCN | 6 | LB1 | Zn/Pt | 30 | 53 |
7 | MeCN | 10 | LB1 | Zn/Pt | 30 | 30 |
8 | MeCN | 8 | LB2 | Zn/Pt | 30 | <50 |
9 | MeCN | 8 | LB3 | Zn/Pt | 30 | 58 |
10 | MeCN | 8 | LB4 | Zn/Pt | 30 | 70 |
11 | MeCN | 8 | LB4 | Zn/C | 30 | 50 |
12 | MeCN | 8 | LB4 | Zn/Pt | 30 | 74 |
13 | MeCN | 8 | LB4 | Zn/Cu | 30 | 58 |
14 | MeCN | 8 | LB4 | Zn/Al | 30 | 72 |
15 | MeCN | 8 | LB4 | Zn/Pt | 40 | 74 |
16 | MeCN | 8 | LB4 | Zn/Pt | 50 | 78 |
17 | MeCN | 8 | LB4 | Zn/Pt | 60 | 80 |
18b | MeCN | 8 | LB4 | Zn/Al | 50 | 82 |
19 | MeCN | 8 | — | Zn/Al | 50 | nd |
20 | MeCN | — | LB4 | Zn/Al | 50 | nd |
Entry | Solvent | I/mA | LB-BH3 | +/- | T/℃ | Yield/% |
---|---|---|---|---|---|---|
1 | DMSO | 8 | LB1 | Zn/Pt | 30 | Trace |
2 | CDCl3 | 8 | LB1 | Zn/Pt | 30 | Trace |
3 | THF | 8 | LB1 | Zn/Pt | 30 | 51 |
4 | PhMe | 8 | LB1 | Zn/Pt | 30 | 30 |
5 | MeCN | 8 | LB1 | Zn/Pt | 30 | 61 |
6 | MeCN | 6 | LB1 | Zn/Pt | 30 | 53 |
7 | MeCN | 10 | LB1 | Zn/Pt | 30 | 30 |
8 | MeCN | 8 | LB2 | Zn/Pt | 30 | <50 |
9 | MeCN | 8 | LB3 | Zn/Pt | 30 | 58 |
10 | MeCN | 8 | LB4 | Zn/Pt | 30 | 70 |
11 | MeCN | 8 | LB4 | Zn/C | 30 | 50 |
12 | MeCN | 8 | LB4 | Zn/Pt | 30 | 74 |
13 | MeCN | 8 | LB4 | Zn/Cu | 30 | 58 |
14 | MeCN | 8 | LB4 | Zn/Al | 30 | 72 |
15 | MeCN | 8 | LB4 | Zn/Pt | 40 | 74 |
16 | MeCN | 8 | LB4 | Zn/Pt | 50 | 78 |
17 | MeCN | 8 | LB4 | Zn/Pt | 60 | 80 |
18b | MeCN | 8 | LB4 | Zn/Al | 50 | 82 |
19 | MeCN | 8 | — | Zn/Al | 50 | nd |
20 | MeCN | — | LB4 | Zn/Al | 50 | nd |
[1] |
(a) Torres G. M.; Frauenlob R.; Franke R.; Börner A. Catal. Sci. Technol. 2015, 5, 34.
doi: 10.1039/C4CY01131G pmid: 17660874 |
(b) Severin R.; Doye S. Chem. Soc. Rev. 2007, 36, 1407.
doi: 10.1039/b600981f pmid: 17660874 |
|
[2] |
(a) da Silva A. P.; Maia A. C. S.; Navarro M. Tetrahedron Lett. 2005, 46, 3233.
|
(b) Toti A.; Frediani P.; Salvini A.; Rosi L.; Giolli C. J. Organomet. Chem. 2005, 690, 3641.
doi: 10.1016/j.jorganchem.2005.04.045 |
|
(c) da Silva A. P.; Mota S. D. C.; Bieber L. W.; Navarro M. Tetrahedron 2006, 62, 5435.
doi: 10.1016/j.tet.2006.03.067 |
|
(d) Schmöger C.; Stolle A.; Bonrath W.; Ondruschka B.; Keller T.; Jandt K. D. ChemSusChem 2009, 2, 77.
doi: 10.1002/cssc.v2:1 |
|
(e) Sahoo M. K.; Sivakumar G.; Jadhav S.; Shaikh S.; Balaraman E. Org. Biomol. Chem. 2021, 19, 5289.
doi: 10.1039/D1OB00850A |
|
[3] |
(a) Jiao K.-J.; Xing Y.-K.; Yang Q.-L.; Qiu H.; Mei T.-S. Acc. Chem. Res. 2020, 53, 300.
doi: 10.1021/acs.accounts.9b00603 |
(b) Shi S.-H.; Liang Y.; Jiao N. Chem. Rev. 2020, 121, 485.
doi: 10.1021/acs.chemrev.0c00335 |
|
(c) Siu J. C.; Fu N.; Lin S. Acc. Chem. Res. 2020, 53, 547.
doi: 10.1021/acs.accounts.9b00529 |
|
(d) Wang F.; Stahl S. S. Acc. Chem. Res. 2020, 53, 561.
doi: 10.1021/acs.accounts.9b00544 |
|
(e) Guo S.; Wu Y.; Wang C.; Gao Y.; Li M.; Zhang B.; Liu C. Nat. Commun. 2022, 13, 5297.
doi: 10.1038/s41467-022-32933-6 |
|
[4] |
(a) Huang B.; Li Y.; Yang C.; Xia W. Chem. Commun. 2019, 55, 6731.
doi: 10.1039/C9CC02368B |
(b) Li J.; He L.; Liu X.; Cheng X.; Li G. Angew. Chem., Int. Ed. 2019, 58, 1759.
doi: 10.1002/anie.v58.6 |
|
(c) Liu J.; Lu L.; Wood D.; Lin S. ACS Cent. Sci. 2020, 6, 1317.
doi: 10.1021/acscentsci.0c00549 |
|
(d) Yang J.; Qin H.; Yan K.; Cheng X.; Wen J. Adv. Synth. Catal. 2021, 363, 5407.
doi: 10.1002/adsc.v363.24 |
|
(e) Zhou H.; Fan R.; Yang J.; Sun X.; Liu X.; Wang X.-C. J. Org. Chem. 2022, 87, 14536.
doi: 10.1021/acs.joc.2c01949 |
|
[5] |
(a) Bálint J.; Egri G.; Fogassy E.; Böcskei Z.; Simon K.; Gajáry A.; Friesz A. Tetrahedron: Asymmetry 1999, 10, 1079.
|
(b) Li G.; Wang C.; Li Y.; Shao K.; Yu G.; Wang S.; Guo X.; Zhao W.; Nakamura H. Chem. Commun. 2020, 56, 7333.
doi: 10.1039/D0CC02921A |
|
[6] |
(a) Chen F.; Sahoo B.; Kreyenschulte C.; Lund H.; Zeng M.; He L.; Junge K.; Beller M. Chem. Sci. 2017, 8, 6239.
doi: 10.1039/C7SC02062G |
(b) Konnerth H.; Prechtl M. H. G. Green Chem. 2017, 19, 2762.
doi: 10.1039/C7GC00513J |
|
(c) Yang C.-H.; Chen X.; Li H.; Wei W.; Yang Z.; Chang J. Chem. Commun. 2018, 54, 8622.
doi: 10.1039/C8CC04262D |
|
(d) Gong Y.; He J.; Wen X.; Xi H.; Wei Z.; Liu W. Org. Chem. Front. 2021, 8, 6901.
doi: 10.1039/D1QO01552D |
|
(e) Xie G.; Török B. Catalysts 2022, 12, 1578.
doi: 10.3390/catal12121578 |
|
[7] |
(a) Fujita K.; Yamamoto K.; Yamaguchi R. Org. Lett. 2002, 4, 2691.
doi: 10.1021/ol026200s pmid: 12816436 |
(b) Omar-Amrani R.; Thomas A.; Brenner E.; Schneider R.; Fort Y. Org. Lett. 2003, 5, 2311.
pmid: 12816436 |
|
(c) Kubo T.; Katoh C.; Yamada K.; Okano K.; Tokuyama H.; Fukuyama T. Tetrahedron 2008, 64, 11230.
doi: 10.1016/j.tet.2008.09.042 pmid: 12816436 |
|
(d) Cirujano F. G.; Leyva‐Pérez A.; Corma A.; Llabrés i Xamena F. X. ChemCatChem 2013, 5, 538.
doi: 10.1002/cctc.v5.2 pmid: 12816436 |
|
(e) Song G.; Nong D.-Z.; Li J.-S.; Li G.; Zhang W.; Cao R.; Wang C.; Xiao J.; Xue D. J. Org. Chem. 2022, 87, 10285.
doi: 10.1021/acs.joc.2c01284 pmid: 12816436 |
|
(f) Zubar V.; Brzozowska A.; Sklyaruk J.; Rueping M. Organometallics 2022, 41, 1743.
doi: 10.1021/acs.organomet.2c00027 pmid: 12816436 |
|
[8] |
(a) Chen F.; Surkus A.-E.; He L.; Pohl M.-M.; Radnik J.; Topf C.; Junge K.; Beller M. J. Am. Chem. Soc. 2015, 137, 11718.
doi: 10.1021/jacs.5b06496 |
(b) Chatterjee B.; Kalsi D.; Kaithal A.; Bordet A.; Leitner W.; Gunanathan C. Catal. Sci. Technol. 2020, 10, 5163.
doi: 10.1039/D0CY00928H |
|
(c) Prybil J. W.; Wallace R.; Warren A.; Klingman J.; Vaillant R.; Hall M. B.; Yang X.; Brennessel W. W.; Chin R. M. ACS Omega 2020, 5, 1528.
doi: 10.1021/acsomega.9b03317 |
|
(d) Zhao J.; Yuan H.; Qin X.; Tian K.; Liu Y.; Wei C.; Zhang Z.; Zhou L.; Fang S. Catal. Lett. 2020, 150, 2841.
doi: 10.1007/s10562-020-03190-3 |
|
(e) El‐Shahat M. J. Heterocycl. Chem. 2022, 59, 399.
doi: 10.1002/jhet.v59.3 |
|
(f) Li Y.-N.; Zhou M.-X.; Wu J.-B.; Wang Z.; Zeng Y.-F. Org. Biomol. Chem. 2022, 20, 9613.
doi: 10.1039/D2OB01923J |
|
(g) Wang M.; Zhang C.; Ci C.; Jiang H.; Dixneuf P. H.; Zhang M. J. Am. Chem. Soc. 2023, 145, 10967.
doi: 10.1021/jacs.3c02776 |
|
[9] |
(a) Fujita K.-I.; Kitatsuji C.; Furukawa S.; Yamaguchi R. Tetrahedron Lett. 2004, 45, 3215.
doi: 10.1016/j.tetlet.2004.02.123 pmid: 22251876 |
(b) Abarca B.; Adam R.; Ballesteros R. Org. Biomol. Chem. 2012, 10, 1826.
doi: 10.1039/c1ob05888f pmid: 22251876 |
|
(c) Lu Y.; Yamamoto Y.; Almansour A. I.; Arumugam N.; Kumar R. S.; Bao M. Chin. J. Catal. 2018, 39, 1746.
doi: 10.1016/S1872-2067(18)63151-1 pmid: 22251876 |
|
(d) Hervochon J.; Dorcet V.; Junge K.; Beller M.; Fischmeister C. Catal. Sci. Technol. 2020, 10, 4820.
doi: 10.1039/D0CY00582G pmid: 22251876 |
|
(e) Yadav S.; Chaudhary D.; Maurya N. K.; Kumar D.; Ishu K.; Kuram M. R. Chem. Commun. 2022, 58, 4255.
doi: 10.1039/D2CC00241H pmid: 22251876 |
|
[10] |
(a) Ye Z.-P.; Gao J.; Duan X.-Y.; Guan J.-P.; Liu F.; Chen K.; Xiao J.-A.; Xiang H.-Y.; Yang H. Chem. Commun. 2021, 57, 8969.
doi: 10.1039/D1CC03288G |
(b) Box J.-R.; Avanthay M.-E.; Poole D.-L.; Lennox A.-J. J. Angew. Chem., Int. Ed. 2023, 62, e202218195.
doi: 10.1002/anie.v62.12 |
|
(c) Chen T.-S.; Long H.; Gao Y.-X.; Xu H.-C. Angew. Chem., Int. Ed. 2023, 62, e202310138.
doi: 10.1002/anie.v62.40 |
|
(d) Chen H.-J.; Zhu C.; Yue H.-F.; Rueping M. Angew. Chem., Int. Ed. 2023, 62, 202306498.
|
|
[11] |
(a) Xia P. J.; Song D.; Ye Z. P.; Hu Y. Z.; Xiao J. A.; Xiang H. Y.; Chen X. Q.; Yang H. Angew. Chem., Int. Ed. 2020, 59, 6706.
doi: 10.1002/anie.v59.17 |
(b) Xia P.-J.; Ye Z.-P.; Hu Y.-Z.; Xiao J.-A.; Chen K.; Xiang H.-Y.; Chen X.-Q.; Yang H. Org. Lett. 2020, 22, 1742.
doi: 10.1021/acs.orglett.0c00020 |
|
[12] |
(a) Chen D. W.; Ochiai M. J. Org. Chem. 1999, 64, 6804.
doi: 10.1021/jo990809y pmid: 30064225 |
(b) Rudolph J.; Schmidt F.; Bolm C. Adv. Synth. Catal. 2004, 346, 867.
doi: 10.1002/adsc.v346:7 pmid: 30064225 |
|
(c) Kokura A.; Tanaka S.; Ikeno T.; Yamada T. Org. Lett. 2006, 8, 3025.
pmid: 30064225 |
|
(d) Vieira T. O.; Alper H. Chem. Commun. 2007, 2710.
pmid: 30064225 |
|
(e) Nolte C.; Mayr H. Eur. J. Org. Chem. 2010, 1435.
pmid: 30064225 |
|
(f) Sakai N.; Fujii K.; Nabeshima S.; Ikeda R.; Konakahara T. Chem. Commun. 2010, 46, 3173.
doi: 10.1039/c000383b pmid: 30064225 |
|
(g) Vile J.; Carta M.; Bezzu C. G.; McKeown N. B. Polym. Chem. 2011, 2, 2257.
doi: 10.1039/c1py00294e pmid: 30064225 |
|
(h) Touge T.; Nara H.; Fujiwhara M.; Kayaki Y.; Ikariya T. J. Am. Chem. Soc. 2016, 138, 10084.
doi: 10.1021/jacs.6b05738 pmid: 30064225 |
|
(i) Pi D.; Zhou H.; Cui P.; He R.; Sui Y. ChemistrySelect 2017, 2, 3976.
doi: 10.1002/slct.v2.13 pmid: 30064225 |
|
(j) Ling F.; Nian S.; Chen J.; Luo W.; Wang Z.; Lv Y.; Zhong W. J. Org. Chem. 2018, 83, 10749.
doi: 10.1021/acs.joc.8b01276 pmid: 30064225 |
|
(k) Ishida S.; Suzuki H.; Uchida S.; Yamaguchi E.; Itoh A. Eur. J. Org. Chem. 2019, 2019, 7483.
doi: 10.1002/ejoc.v2019.45 pmid: 30064225 |
|
(l) Li W.; Cui X.; Junge K.; Surkus A.-E.; Kreyenschulte C.; Bartling S.; Beller M. ACS Catal. 2019, 9, 4302.
doi: 10.1021/acscatal.8b04807 pmid: 30064225 |
|
(m) Wang Y.; Zhu L.; Shao Z.; Li G.; Lan Y.; Liu Q. J. Am. Chem. Soc. 2019, 141, 17337.
doi: 10.1021/jacs.9b09038 pmid: 30064225 |
|
(n) Fang H. Q.; Oestreich M. Angew. Chem., Int. Ed. 2020, 59, 11394.
doi: 10.1002/anie.v59.28 pmid: 30064225 |
|
(o) Guo L.; Yang C.; Zhang X.; Wang L.; Xia R. Y.; Xia W. Synlett 2022, 33, 1302.
doi: 10.1055/a-1833-9025 pmid: 30064225 |
|
(p) Wu J.; Yan B.; Meng J.; Yang E.; Ye X.; Yao Q. Org. Biomol. Chem. 2022, 20, 8638.
doi: 10.1039/D2OB01353C pmid: 30064225 |
|
(q) Yu R. R.; Hao F. Y.; Zhang X. Y.; Fang Z. B.; Jin Z. N.; Liu G. Y.; Dai G. L.; Wu J. S. J. Org.Chem. 2023, 88, 8279.
pmid: 30064225 |
[1] | 杨帆, 方婷, 杨桂春, 高梦. 亚硝基苯参与的电化学串联环化反应构建喹啉/吡咯[J]. 有机化学, 2024, 44(3): 1021-1030. |
[2] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[3] | 周兰, 何红, 杨德巧, 侯中伟, 王磊. N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024, 44(3): 981-988. |
[4] | 吴际伟, 何俊, 王晶晶, 李丽霞, 徐采玉, 周洁, 李子荣, 许华建. 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024, 44(3): 972-980. |
[5] | 朱子乐, 李鹏飞, 仇友爱. 电化学芳烃C(sp2)—H胺化反应的研究进展[J]. 有机化学, 2024, 44(3): 871-891. |
[6] | 叶增辉, 刘华清, 张逢质. 有机光电催化合成研究进展[J]. 有机化学, 2024, 44(3): 840-870. |
[7] | 黄健, 张文珍. 碳氮键参与的电化学阴极还原反应研究进展[J]. 有机化学, 2024, 44(3): 825-839. |
[8] | 陈远航, 何劲宇, 张博, 王延钊, 孔令轩, 钱伟烽, 王娜娜, 段闻喜, 欧阳妍妍, 朱翠菊, 徐浩. 不对称电化学有机合成[J]. 有机化学, 2024, 44(3): 748-779. |
[9] | 孙雪, 颜廷涛, 闫克鲁, 杨建静, 文江伟. 电化学促使α-重氮酯的磷酸化构筑亚膦酸腙[J]. 有机化学, 2024, 44(3): 1013-1020. |
[10] | 方新月, 黄雅雯, 胡新伟, 阮志雄. 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024, 44(3): 903-926. |
[11] | 李梦帆, 程旭. 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024, 44(3): 1005-1012. |
[12] | 李章健, 王振华, 郭剑峰, 方萍, 马聪, 刘润华, 梅天胜. 电化学促进2,2,6,6-四甲基哌啶氧化物(TEMPO)介导的甘氨酸衍生物氧化脱氢Povarov/串联反应[J]. 有机化学, 2024, 44(3): 940-950. |
[13] | 王竣永, 李娜, 柯杰, 何川. 电化学硅基化反应的研究进展[J]. 有机化学, 2024, 44(3): 927-939. |
[14] | Hasil Aman, 常瑞, 叶俊涛. 氧化型光电催化促进的C—H键官能团化反应研究进展[J]. 有机化学, 2024, 44(3): 728-747. |
[15] | 段芳颖, 原孟磊, 张健. 无机小分子还原耦合选择性氧化反应的成对电解[J]. 有机化学, 2024, 44(3): 809-824. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||