Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (10): 3398-3404.DOI: 10.6023/cjoc202207009 Previous Articles Next Articles
Special Issue: 不对称催化专辑
ARTICLES
李红霞a, 陈棚b, 伍智林b, 陆雨函b, 彭俊梅*(), 陈锦杨b, 何卫民b,*()
收稿日期:
2022-07-05
修回日期:
2022-08-06
发布日期:
2022-11-02
通讯作者:
彭俊梅, 何卫民
基金资助:
Hongxia Lia, Peng Chenb, Zhilin Wub, Yuhan Lub, Junmei Peng(), Jingyang Chenb, Weimin Heb()
Received:
2022-07-05
Revised:
2022-08-06
Published:
2022-11-02
Contact:
Junmei Peng, Weimin He
Supported by:
Share
Hongxia Li, Peng Chen, Zhilin Wu, Yuhan Lu, Junmei Peng, Jingyang Chen, Weimin He. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH4SCN[J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3398-3404.
Entry | Condition | Yieldb/% |
---|---|---|
1 | No change | 91 (88)c |
2 | Pt(+)|Pt(–) instead of Pt(+)|Al foam (–) | 72 |
3 | Pt(+)|C(–) instead of Pt(+)|Al foam (–) | 82 |
4 | Pt(+)|Fe(–) instead of Pt(+)|Al foam (–) | 84 |
5 | Pt(+)|Cu(–) instead of Pt(+)|Al foam (–) | 16 |
6 | C (+)|Pt(–) instead of Pt(+)|Al foam (–) | 89 |
7 | C(+)|C(–) instead of Pt(+)|Al foam (–) | 38 |
8 | C(+)|Al foam (–) instead of C(+)|Pt(–) | 75 |
9 | RVC(+)|Al foam (–) instead of Pt(+)|Al foam (–) | 85 |
10 | KSCN instead of NH4SCN | 67 |
11 | NaSCN instead of NH4SCN | 82 |
12 | DMF instead of MeCN | 16 |
13 | DMSO instead of MeCN | Trace |
14 | EtOH instead of MeCN | Trace |
15 | Acetone instead of MeCN | Trace |
16 | 15 mA, 15 h | 87 |
17 | Without electric current | N.R. |
Entry | Condition | Yieldb/% |
---|---|---|
1 | No change | 91 (88)c |
2 | Pt(+)|Pt(–) instead of Pt(+)|Al foam (–) | 72 |
3 | Pt(+)|C(–) instead of Pt(+)|Al foam (–) | 82 |
4 | Pt(+)|Fe(–) instead of Pt(+)|Al foam (–) | 84 |
5 | Pt(+)|Cu(–) instead of Pt(+)|Al foam (–) | 16 |
6 | C (+)|Pt(–) instead of Pt(+)|Al foam (–) | 89 |
7 | C(+)|C(–) instead of Pt(+)|Al foam (–) | 38 |
8 | C(+)|Al foam (–) instead of C(+)|Pt(–) | 75 |
9 | RVC(+)|Al foam (–) instead of Pt(+)|Al foam (–) | 85 |
10 | KSCN instead of NH4SCN | 67 |
11 | NaSCN instead of NH4SCN | 82 |
12 | DMF instead of MeCN | 16 |
13 | DMSO instead of MeCN | Trace |
14 | EtOH instead of MeCN | Trace |
15 | Acetone instead of MeCN | Trace |
16 | 15 mA, 15 h | 87 |
17 | Without electric current | N.R. |
[1] |
(a) Subbaiah, M. A. M.; Meanwell, N. A. J. Med. Chem. 2021, 64, 14046.
doi: 10.1021/acs.jmedchem.1c01215 pmid: 29565432 |
(b) Sun, K.; Xiao, F.; Yu, B.; He, W.-M. Chin. J. Catal. 2021, 42, 1921.
doi: 10.1016/S1872-2067(21)63850-0 pmid: 29565432 |
|
(c) Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
doi: 10.1021/acssuschemeng.9b02178 pmid: 29565432 |
|
(d) Yuan, L.; Jiang, S.-M.; Li, Z.-Z.; Zhu, Y.; Yu, J.; Li, L.; Li, M.-Z.; Tang, S.; Sheng, R.-R. Org. Biomol. Chem. 2018, 16, 2406.
doi: 10.1039/C8OB00132D pmid: 29565432 |
|
[2] |
(a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
doi: 10.1021/jm4017625 |
(b) Ramadan, M.; Aly, A. A.; El-Haleem, L. E. A.; Alshammari, M. B.; Bräse, S. Molecules 2021, 26, 4995.
doi: 10.3390/molecules26164995 |
|
(c) Costa, R. F.; Turones, L. C.; Cavalcante, K. V. N.; Rosa Júnior, I. A.; Xavier, C. H.; Rosseto, L. P.; Napolitano, H. B.; Castro, P. F. d. S.; Neto, M. L. F.; Galvão, G. M.; Menegatti, R.; Pedrino, G. R.; Costa, E. A.; Martins, J. L. R.; Fajemiroye, J. O. Front. Pharmacol. 2021, 12, 666725.
|
|
(d) Yu, J.; Sheng, H.-X.; Wang, S.-W.; Xu, Z.-H.; Tang, S.; Chen, S.-L. Chem. Commun. 2019, 55, 4578.
doi: 10.1039/C9CC00294D |
|
[3] |
(a) Wössner, N.; Alhalabi, Z.; González, J.; Swyter, S.; Gan, J.; Schmidtkunz, K.; Zhang, L.; Vaquero, A.; Ovaa, H.; Einsle, O.; Sippl, W.; Jung, M. Front. Oncol. 2020, 10, 657.
doi: 10.3389/fonc.2020.00657 pmid: 33961435 |
(b) Burmistrov, V.; Saxena, R.; Pitushkin, D.; Butov, G. M.; Chung, F.-L.; Aggarwal, M. J. Med. Chem. 2021, 64, 6621.
doi: 10.1021/acs.jmedchem.0c01971 pmid: 33961435 |
|
(c) Sun, Y.; Fu, R.; Lin, S.; Zhang, J.; Ji, M.; Zhang, Y.; Wu, D.; Zhang, K.; Tian, H.; Zhang, M.; Sheng, L.; Li, Y.; Jin, J.; Chen, X.; Xu, H. Biorg. Med. Chem. 2021, 29, 115890.
pmid: 33961435 |
|
[4] |
(a) Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.
doi: 10.1039/c5cs00532a pmid: 26658383 |
(b) Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. ACS Sustainable Chem. Eng. 2019, 7, 14009.
doi: 10.1021/acssuschemeng.9b02511 pmid: 26658383 |
|
(c) Wen, J.; Niu, C.; Yan, K.; Cheng, X.; Gong, R.; Li, M.; Guo, Y.; Yang, J.; Wang, H. Green Chem. 2020, 22, 1129.
doi: 10.1039/C9GC04068D pmid: 26658383 |
|
[5] |
(a) Venkanna, P.; Rajanna, K. C.; Kumar, M. S.; Venkateswarlu, M.; Ali, M. M. Synlett 2016, 27, 237.
doi: 10.1055/s-0035-1560503 |
(b) Dyga, M.; Hayrapetyan, D.; Rit, R. K.; Gooßen, L. J. Adv. Synth. Catal. 2019, 361, 3548.
doi: 10.1002/adsc.201900156 |
|
(c) Meng, F.; Zhang, H.; He, H.; Xu, N.; Fang, Q.; Guo, K.; Cao, S.; Shi, Y.; Zhu, Y. Adv. Synth. Catal. 2020, 362, 248.
doi: 10.1002/adsc.201901104 |
|
(d) Cao, M.; Fang, Y.-L.; Wang, Y.-C.; Xu, X.-J.; Xi, Z.-W.; Tang, S. ACS Comb. Sci. 2020, 22, 268.
doi: 10.1021/acscombsci.0c00012 |
|
(e) Nadiveedhi, M. R.; Cirandur, S. R.; Akondi, S. M. Green Chem. 2020, 22, 5589.
doi: 10.1039/D0GC01726D |
|
(f) Zeng, F.-L.; Zhu, H.-L.; Chen, X.-L.; Qu, L.-B.; Yu, B. Green Chem. 2021, 23, 3677.
doi: 10.1039/D1GC00938A |
|
(g) Zhang, Y.; Gao, H.; Guo, J.; Zhang, H.; Yao, X. Chem. Commun. 2021, 57, 13166.
doi: 10.1039/D1CC05208J |
|
(h) Lu, F.; Zhang, K.; Yao, Y.; Yin, Y.; Chen, J.; Zhang, X.; Wang, Y.; Lu, L.; Gao, Z.; Lei, A. Green Chem. 2021, 23, 763.
doi: 10.1039/D0GC03590D |
|
(i) Huang, A.-X.; Zhu, H.-L.; Zeng, F.-L.; Chen, X.-L.; Huang, X.-Q.; Qu, L.-B.; Yu, B. Org. Lett. 2022, 24, 3014.
doi: 10.1021/acs.orglett.2c00927 |
|
(j) He, W.-B.; Zhao, S.-J.; Chen, J.-Y.; Jiang, J.; Chen, X.; Xu, x.; He, W.-M. Chin. Chem. Lett. 2022, 33, DOI: 10.1016/j.cclet.2022.06.063.
doi: 10.1016/j.cclet.2022.06.063 |
|
(k) Xiao, J.; Ai, Z.; Li, X.; Tao, S.; Zhao, B.; Wang, X.; Wang, X.; Du, Y. Green Synth. Catal. 2022, 3, 198.
|
|
[6] |
Huang, C.-Y.; Kang, H.; Li, J.; Li, C.-J. J. Org. Chem. 2019, 84, 12705.
doi: 10.1021/acs.joc.9b01704 |
[7] |
(a) Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A. Tetrahedron Lett. 2014, 55, 4306.
doi: 10.1016/j.tetlet.2014.06.028 |
(b) Khalili, D. New J. Chem. 2016, 40, 2547.
doi: 10.1039/C5NJ02314A |
|
(c) Ren, Y.-L.; Wang, W.; Zhao, B.; Tian, X.; Zhao, S.; Wang, J.; Li, F. ChemCatChem 2016, 8, 3361.
doi: 10.1002/cctc.201600785 |
|
(d) Ali, D.; Panday, A. K.; Choudhury, L. H. J. Org. Chem. 2020, 85, 13610.
doi: 10.1021/acs.joc.0c01738 |
|
(e) Dai, P.; Li, C.; Li, Y.; Xia, Q.; Zhang, M.; Gu, Y.-C.; Zhang, W.-H. Asian J. Org. Chem. 2020, 9, 1585.
doi: 10.1002/ajoc.202000400 |
|
(f) Mao, X.; Ni, J.; Xu, B.; Ding, C. Org. Chem. Front. 2020, 7, 350.
doi: 10.1039/C9QO01174A |
|
(g) Kokorekin, V. A.; Khodonov, V. M.; Neverov, S. V.; Grammatikova, N. É.; Petrosyan, V. A. Russ. Chem. Bull. 2021, 70, 600.
doi: 10.1007/s11172-021-3131-5 |
|
(h) Pan, J.; Liu, C.; Wang, J.; Dai, Y.; Wang, S.; Guo, C. Tetrahedron Lett. 2021, 77, 153253.
|
|
[8] |
(a) Tang, H.-T.; Jia, J.-S.; Pan, Y.-M. Org. Biomol. Chem. 2020, 18, 5315.
doi: 10.1039/D0OB01008A |
(b) Martins, G. M.; Zimmer, G. C.; Mendes, S. R.; Ahmed, N. Green Chem. 2020, 22, 4849.
doi: 10.1039/D0GC01324B |
|
(c) Du, Z.; Qi, Q.; Gao, W.; Ma, L.; Liu, Z.; Wang, R.; Chen, J. Chem. Rec. 2022, 22, e202100178.
|
|
(d) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19
|
|
(e) Yuan, Y.; Yang, J.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058.
doi: 10.1039/D1CS00150G |
|
(f) Chen, N.; Xu, H.-C. Green Synth. Catal. 2021, 2, 165.
|
|
(g) Chen, N.; Xu, H.-C. Chem. Rec. 2021, 21, 2306.
doi: 10.1002/tcr.202100048 |
|
[9] |
(a) Shen, H.; Cheng, D.; Li, Y.; Liu, T.; Yi, X.; Liu, L.; Ling, F.; Zhong, W. Green Synth. Catal. 2020, 1, 175.
|
(b) Hou, Z.-W.; Xu, H.-C. Chin. J. Chem. 2020, 38, 394.
doi: 10.1002/cjoc.201900500 |
|
(c) Zhang, J.; Wang, H.; Chen, Y.; Xie, H.; Ding, C.; Tan, J.; Xu, K. Chin. Chem. Lett. 2020, 31, 1576.
doi: 10.1016/j.cclet.2019.11.037 |
|
(d) Meng, X.; Zhang, Y.; Luo, J.; Wang, F.; Cao, X.; Huang, S. Org. Lett. 2020, 22, 1169.
doi: 10.1021/acs.orglett.0c00052 |
|
(e) Dong, X.; Wang, R.; Jin, W.; Liu, C. Org. Lett. 2020, 22, 3062.
doi: 10.1021/acs.orglett.0c00814 |
|
(f) Wu, Y.; Chen, J.-Y.; Liao, H.-R.; Shu, X.-R.; Duan, L.-L.; Yang, X.-F.; He, W.-M. Green Synth. Catal. 2021, 2, 233.
|
|
(g) Chen, J.-Y.; Wu, H.-Y.; Gui, Q.-W.; Yan, S.-S.; Deng, J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. J. Catal. 2021, 42, 1445.
doi: 10.1016/S1872-2067(20)63750-0 |
|
(h) Zhao, F.; Meng, N.; Sun, T.; Wen, J.; Zhao, X.; Wei, W. Org. Chem. Front. 2021, 8, 6508.
doi: 10.1039/D1QO01351C |
|
(i) Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328.
doi: 10.1039/D1GC00949D |
|
(j) Guo, S.; Liu, L.; Hu, K.; Sun, Q.; Zha, Z.; Yang, Y.; Wang, Z. Chin. Chem. Lett. 2021, 32, 1033.
doi: 10.1016/j.cclet.2020.09.041 |
|
(k) Wu, Z.-L.; Chen, J.-Y.; Tian, X.-Z.; Ouyang, W.-T.; Zhang, Z.-T.; He, W.-M. Chin. Chem. Lett. 2022, 33, 1501.
doi: 10.1016/j.cclet.2021.08.071 |
|
(l) Niu, K.; Ding, L.; Zhou, P.; Hao, Y.; Liu, Y.; Song, H.; Wang, Q. Green Chem. 2021, 23, 3246.
doi: 10.1039/D1GC00861G |
|
(m) Li, Y.; Huang, Z.; Mo, G.; Jiang, W.; Zheng, C.; Feng, P.; Ruan, Z. Chin. J. Chem. 2021, 39, 942.
doi: 10.1002/cjoc.202000586 |
|
[10] |
(a) Gui, Q.-W.; Teng, F.; Yang, H.; Xun, C.; Huang, W.-J.; Lu, Z.-Q.; Zhu, M.-X.; Ouyang, W.-T.; He, W.-M. Chem. Asian J. 2022, 17, e202101139.
|
(b) Jiang, J.; Xiao, F.; He, W.-M.; Wang, L. Chin. Chem. Lett. 2021, 32, 1637.
doi: 10.1016/j.cclet.2021.02.057 |
|
(c) Chen, X.; Xiao, F.; He, W.-M. Org. Chem. Front. 2021, 8, 5206.
doi: 10.1039/D1QO00375E |
|
(d) Chen, J.-Y.; Huang, J.; Sun, K.; He, W.-M. Org. Chem. Front. 2022, 9, 1152.
doi: 10.1039/D1QO01504D |
|
(e) Yang, D.; Yan, Q.; Zhu, E.; Lv, J.; He, W.-M. Chin. Chem. Lett. 2022, 33, 1798.
doi: 10.1016/j.cclet.2021.09.068 |
|
[11] |
(a) Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950.
doi: 10.1039/D1GC00562F |
(b) Yuan, Y.; Li, L.-S.; Zhang, L.; Wang, F.; Jiang, L.; Zuo, L.; Wang, Q.; Hu, J.-G.; Lei, A. Chem. Commun. 2021, 57, 2768.
doi: 10.1039/D1CC00486G |
|
[12] |
(a) Songsichan, T.; Katrun, P.; Khaikate, O.; Soorukram, D.; Pohmakotr, M.; Reutrakul, V.; Kuhakarn, C. SynOpen 2018, 2, 0006.
doi: 10.1055/s-0036-1591891 |
(b) Pan, J.; Liu, C.; Wang, J.; Dai, Y.; Wang, S.; Guo, C. Tetrahedron Lett. 2021, 77, 153253.
|
[1] | Jing Huang, Yihua Yang, Zhanhui Zhang, Shouxin Liu. Recent Progress on Green Methods and Technologies for Efficient Formation of Amide Bonds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 409-420. |
[2] | Yixin Jiang, Boxiao Tang, Haibo Mao, Xuexia Chen, Yangjie Yu, Cuiying Quan, Zhaoyang Xu, Jinhui Shi, Yilin Liu. A Green, Recyclable and Carrier-Free Study for the Coupling Reaction of Alkenes with Aryl Iodides in H2O-Polyethylene Glycol (PEG-200) [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3210-3215. |
[3] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[4] | Kai Lu, Haoqi Qu, Xi Chen, Hui Qiu, Jing Zheng, Mengtao Ma. Catalyst-Free and Solvent-Free Hydroboration of Alkynes and Alkenes with Catecholborane [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2197-2205. |
[5] | Junying Zhang, Xiaojing Zhao, Ganpeng Li, Yonghui He. Electrochemical Synthesis of Masked Organoboronic Acids RB(dan) at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1815-1823. |
[6] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[7] | Yongzhou Pan, Xiujin Meng, Yingchun Wang, Muxue He. Recent Progress in Electrochemical Fixation of CO2 to Construct Carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1416-1434. |
[8] | Jiawei Huang, Xiaoman Li, Liang Xu, Yu Wei. Electrochemical Decarboxylation Coupling of α-Keto Acids with Thiophenols: A New Avenue for the Synthesis of Thioesters [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 756-762. |
[9] | Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3470-3490. |
[10] | Shiwei Yu, Zhaohua Chen, Qi Chen, Shuting Lin, Jinping He, Guanshen Tao, Zhaoyang Wang. Research Progress in Synthesis and Application of Thiosulfonates [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2322-2330. |
[11] | Haiqiong Li, Mengyun Yin, Fenfen Xie, Zhengbing Zhang, Pan Han, Linhai Jing. Synthesis of Nitrile via Electrochemical Appel Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2229-2235. |
[12] | Qingyun Gu, Zhenfeng Cheng, Xiaobao Zeng. Electrochemical Oxidative Trifluoromethylation of α-Oxoketene Ketene Dithioacetals with CF3SO2Na [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1537-1544. |
[13] | Zhengjiang Fu, Zhenjiang Yang, Li Sun, Jian Yin, Xuezheng Yi, Hu Cai, Aiwen Lei. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 600-606. |
[14] | Xiaolong Guo, Yuxian Wang, Zhiqiang Zhao, Qing Wang, Jian Zuo, Luyao Wang. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1H)-ones and the Performance Evaluation via Electro-descriptors [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 641-649. |
[15] | Yu Zheng, Shencheng Qian, Pengcheng Xu, Binnan Zheng, Shenlin Huang. Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4275-4281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||