Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (7): 2528-2542.DOI: 10.6023/cjoc202210036 Previous Articles Next Articles
ARTICLES
朱玥a, 陈璐a, 赵静a, 孙庆荣a, 杨维清a, 付海燕b, 马梦林a,*()
收稿日期:
2022-10-28
修回日期:
2022-12-02
发布日期:
2023-02-14
通讯作者:
马梦林
基金资助:
Yue Zhua, Lu Chena, Jing Zhaoa, Qingrong Suna, Weiqing Yanga, Haiyan Fub, Menglin Maa()
Received:
2022-10-28
Revised:
2022-12-02
Published:
2023-02-14
Contact:
Menglin Ma
Supported by:
Share
Yue Zhu, Lu Chen, Jing Zhao, Qingrong Sun, Weiqing Yang, Haiyan Fu, Menglin Ma. Synthesis of Quinoline Derivatives by Friedländer Reaction Catalyzed by Ruthenium Complexes of Substituted 8-Hydroxyquinoline[J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2528-2542.
Entry | n(2a)∶n(3a) | Atmosphere | Base (equiv.) | Cat. (C/S) | Temp./℃ | Solvent | CR/% | Selectivitya/% |
---|---|---|---|---|---|---|---|---|
1 | 1∶1.1 | Air | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 32 | 33 |
2 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 40 | 43 |
3 | 1∶1.1 | Ar | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 41 | 42 |
4 | 1∶1.1 | N2 | —b | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 0c | 0b |
5 | 1∶1.1 | N2 | NaOH (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 50 | 26 |
6 | 1∶1.1 | N2 | t-BuOK (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 40 | 33 |
7 | 1∶1.1 | N2 | KOH (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 47 | 29 |
8 | 1∶1.1 | N2 | K2CO3 (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 17 | 54 |
9 | 1∶1.1 | N2 | Et3N (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 2 | 1 |
10 | 1∶1.1 | N2 | Pyridine (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 2 | 1 |
11 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 82 | CH3CN | 29 | 44 |
12 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 67 | Tetrahydrofuran | 11 | 54 |
13 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 85 | tert-Butanol | 53 | 35 |
14 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 111 | Toluene | 57 | 51 |
15 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 102 | 1,4-Dioxane | 32 | 60 |
16 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 100 | DMSO | 22 | 24 |
17 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 100 | DMF | 1 | 2 |
18 | 1∶1.2 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 53 | 56 |
19 | 1∶1.3 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 58 | 56 |
20 | 1∶1.4 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 59 | 57 |
21 | 1∶1.5 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 61 | 57 |
22 | 1∶1.6 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 59 | 57 |
23 | 1∶2.0 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 50 | 57 |
24 | 1∶1.2 | N2 | CH3ONa (1.1) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 53 | 55 |
25 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 68 | 62 |
26 | 1∶1.2 | N2 | CH3ONa (1.4) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 67 | 61 |
27 | 1∶1.2 | N2 | CH3ONa (1.5) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 51 | 59 |
28 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.2 mol%) | 110 | Toluene | 67 | 63 |
29 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.3 mol%) | 110 | Toluene | 69 | 63 |
30 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.4 mol%) | 110 | Toluene | 70 | 63 |
31 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 110 | Toluene | 73 | 64 |
32 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (1.0 mol%) | 110 | Toluene | 75 | 65 |
33 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (2.0 mol%) | 110 | Toluene | 74 | 65 |
34 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 20 | Toluene | 0b | 0b |
35 | 1∶1.52 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 40 | Toluene | 64 | 63 |
36 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 60 | Toluene | 74 | 70 |
37 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 90 | Toluene | 77 | 64 |
Entry | n(2a)∶n(3a) | Atmosphere | Base (equiv.) | Cat. (C/S) | Temp./℃ | Solvent | CR/% | Selectivitya/% |
---|---|---|---|---|---|---|---|---|
1 | 1∶1.1 | Air | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 32 | 33 |
2 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 40 | 43 |
3 | 1∶1.1 | Ar | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 41 | 42 |
4 | 1∶1.1 | N2 | —b | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 0c | 0b |
5 | 1∶1.1 | N2 | NaOH (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 50 | 26 |
6 | 1∶1.1 | N2 | t-BuOK (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 40 | 33 |
7 | 1∶1.1 | N2 | KOH (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 47 | 29 |
8 | 1∶1.1 | N2 | K2CO3 (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 17 | 54 |
9 | 1∶1.1 | N2 | Et3N (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 2 | 1 |
10 | 1∶1.1 | N2 | Pyridine (1.2) | (1a)3Ru (0.1 mol%) | 70 | CH3OH | 2 | 1 |
11 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 82 | CH3CN | 29 | 44 |
12 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 67 | Tetrahydrofuran | 11 | 54 |
13 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 85 | tert-Butanol | 53 | 35 |
14 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 111 | Toluene | 57 | 51 |
15 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 102 | 1,4-Dioxane | 32 | 60 |
16 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 100 | DMSO | 22 | 24 |
17 | 1∶1.1 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 100 | DMF | 1 | 2 |
18 | 1∶1.2 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 53 | 56 |
19 | 1∶1.3 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 58 | 56 |
20 | 1∶1.4 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 59 | 57 |
21 | 1∶1.5 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 61 | 57 |
22 | 1∶1.6 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 59 | 57 |
23 | 1∶2.0 | N2 | CH3ONa (1.2) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 50 | 57 |
24 | 1∶1.2 | N2 | CH3ONa (1.1) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 53 | 55 |
25 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 68 | 62 |
26 | 1∶1.2 | N2 | CH3ONa (1.4) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 67 | 61 |
27 | 1∶1.2 | N2 | CH3ONa (1.5) | (1a)3Ru (0.1 mol%) | 110 | Toluene | 51 | 59 |
28 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.2 mol%) | 110 | Toluene | 67 | 63 |
29 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.3 mol%) | 110 | Toluene | 69 | 63 |
30 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.4 mol%) | 110 | Toluene | 70 | 63 |
31 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 110 | Toluene | 73 | 64 |
32 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (1.0 mol%) | 110 | Toluene | 75 | 65 |
33 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (2.0 mol%) | 110 | Toluene | 74 | 65 |
34 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 20 | Toluene | 0b | 0b |
35 | 1∶1.52 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 40 | Toluene | 64 | 63 |
36 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 60 | Toluene | 74 | 70 |
37 | 1∶1.2 | N2 | CH3ONa (1.3) | (1a)3Ru (0.5 mol%) | 90 | Toluene | 77 | 64 |
Entry | Cat. | Positions of substituted | CR/% | Selectivityb/% |
---|---|---|---|---|
1 | (1a)3Ru | —c | 74 | 70 |
2 | (1c)3Ru | 2-Substituted quinoline | 17 | 18 |
3 | (1d)3Ru | 2-Substituted quinoline | 45 | 20 |
4 | (1g)3Ru | 2-Substituted quinoline | 64 | 13 |
5 | (1h)3Ru | 2-Substituted quinoline | 52 | 16 |
6 | (1r)3Ru | 2-Substituted quinoline | 63 | 11 |
7 | (1s)3Ru | 2-Substituted quinoline | 54 | 20 |
8 | (1b)3Ru | 7-Substituted quinoline | 35 | 33 |
9 | (1l)3Ru | 7-Substituted quinoline | 44 | 25 |
10 | (1m)3Ru | 7-Substituted quinoline | 52 | 38 |
11 | (1i)3Ru | 3- or 4-Substituted quinoline | 69 | 65 |
12 | (1j)3Ru | 3- or 4-Substituted quinoline | 75 | 72 |
13 | (1p)3Ru | 3- or 4-Substituted quinoline | 75 | 67 |
14 | (1q)3Ru | 3- or 4-Substituted quinoline | 68 | 73 |
15 | (1e)3Ru | 5-Substituted quinoline | 81 | 96 |
16 | (1k)3Ru | 5-Substituted quinoline | 78 | 92 |
17 | (1n)3Ru | 5-Substituted quinoline | 58 | 85 |
18 | (1o)3Ru | 5-Substituted quinoline | 52 | 90 |
19 | (1f)3Ru | 5-Substituted quinoline | 94 | 26 |
Entry | Cat. | Positions of substituted | CR/% | Selectivityb/% |
---|---|---|---|---|
1 | (1a)3Ru | —c | 74 | 70 |
2 | (1c)3Ru | 2-Substituted quinoline | 17 | 18 |
3 | (1d)3Ru | 2-Substituted quinoline | 45 | 20 |
4 | (1g)3Ru | 2-Substituted quinoline | 64 | 13 |
5 | (1h)3Ru | 2-Substituted quinoline | 52 | 16 |
6 | (1r)3Ru | 2-Substituted quinoline | 63 | 11 |
7 | (1s)3Ru | 2-Substituted quinoline | 54 | 20 |
8 | (1b)3Ru | 7-Substituted quinoline | 35 | 33 |
9 | (1l)3Ru | 7-Substituted quinoline | 44 | 25 |
10 | (1m)3Ru | 7-Substituted quinoline | 52 | 38 |
11 | (1i)3Ru | 3- or 4-Substituted quinoline | 69 | 65 |
12 | (1j)3Ru | 3- or 4-Substituted quinoline | 75 | 72 |
13 | (1p)3Ru | 3- or 4-Substituted quinoline | 75 | 67 |
14 | (1q)3Ru | 3- or 4-Substituted quinoline | 68 | 73 |
15 | (1e)3Ru | 5-Substituted quinoline | 81 | 96 |
16 | (1k)3Ru | 5-Substituted quinoline | 78 | 92 |
17 | (1n)3Ru | 5-Substituted quinoline | 58 | 85 |
18 | (1o)3Ru | 5-Substituted quinoline | 52 | 90 |
19 | (1f)3Ru | 5-Substituted quinoline | 94 | 26 |
Entry | Compd. | IR/cm-1 | UV/nm | Catalytic performance | ||
---|---|---|---|---|---|---|
Ru—O | C—O | CR/% | Selectivity/% | |||
1 | (1a)3Ru | 3372 | 527 | 431 | 74 | 70 |
2 | (1b)3Ru | 3438 | 538 | 429 | 35 | 33 |
3 | (1c)3Ru | 3286 | 540 | 428 | 17 | 18 |
4 | (1e)3Ru | 3439 | 542 | 444 | 81 | 96 |
5 | (1k)3Ru | 3444 | 548 | 443 | 78 | 92 |
Entry | Compd. | IR/cm-1 | UV/nm | Catalytic performance | ||
---|---|---|---|---|---|---|
Ru—O | C—O | CR/% | Selectivity/% | |||
1 | (1a)3Ru | 3372 | 527 | 431 | 74 | 70 |
2 | (1b)3Ru | 3438 | 538 | 429 | 35 | 33 |
3 | (1c)3Ru | 3286 | 540 | 428 | 17 | 18 |
4 | (1e)3Ru | 3439 | 542 | 444 | 81 | 96 |
5 | (1k)3Ru | 3444 | 548 | 443 | 78 | 92 |
Entry | Compd. | Bond length/nm | θ/(°) | HOMO/eV | LOMO/eV | HOMO(α)-LOMO(α) gap/eV | Catalytic performance | ||
---|---|---|---|---|---|---|---|---|---|
Ru—O | Ru—N | CR/% | Selectivity/% | ||||||
1 | (1a)3Ru | 0.203 | 0.210 | 80.4 | -6.30467 | -0.67078 | 5.63389 | 74 | 70 |
2 | (1b)3Ru | 0.204 | 0.210 | 81.9 | -6.13045 | -0.66572 | 5.46473 | 35 | 33 |
3 | (1c)3Ru | 0.200 | 0.215 | 81.4 | -6.12713 | -0.66283 | 5.46430 | 17 | 18 |
4 | (1e)3Ru | 0.200 | 0.210 | 80.4 | -6.33766 | -0.63527 | 5.70239 | 81 | 96 |
5 | (1k)3Ru | 0.200 | 0.210 | 80.3 | -6.32899 | -0.62135 | 5.70764 | 78 | 92 |
Entry | Compd. | Bond length/nm | θ/(°) | HOMO/eV | LOMO/eV | HOMO(α)-LOMO(α) gap/eV | Catalytic performance | ||
---|---|---|---|---|---|---|---|---|---|
Ru—O | Ru—N | CR/% | Selectivity/% | ||||||
1 | (1a)3Ru | 0.203 | 0.210 | 80.4 | -6.30467 | -0.67078 | 5.63389 | 74 | 70 |
2 | (1b)3Ru | 0.204 | 0.210 | 81.9 | -6.13045 | -0.66572 | 5.46473 | 35 | 33 |
3 | (1c)3Ru | 0.200 | 0.215 | 81.4 | -6.12713 | -0.66283 | 5.46430 | 17 | 18 |
4 | (1e)3Ru | 0.200 | 0.210 | 80.4 | -6.33766 | -0.63527 | 5.70239 | 81 | 96 |
5 | (1k)3Ru | 0.200 | 0.210 | 80.3 | -6.32899 | -0.62135 | 5.70764 | 78 | 92 |
[1] |
Zhu, Y.; Cai, C. RSC Adv. 2014, 4, 52911.
doi: 10.1039/C4RA07858F |
[2] |
Pothikumar, R.; Bhat, V. T.; Namitharan, K. Chem. Commun. 2020, 56, 13607.
doi: 10.1039/D0CC05912A |
[3] |
Akbari, J.; Heydari, A.; Kalhor, H. R.; Kohan, S. A. Cheminform 2010, 41, 137.
|
[4] |
Das, S.; Sinha, S.; Samanta, D.a; Mondal, R.; Chakraborty, G.; Brandao, P.; Paul, N. D. J. Org. Chem. 2019, 84, 10160.
doi: 10.1021/acs.joc.9b01343 |
[5] |
Mondal, R.; Chakraborty, G.; Guin, A. K.; Pal, S.; Paul, N. D. Tetrahedron 2021, 100, 132479.
doi: 10.1016/j.tet.2021.132479 |
[6] |
(a) Genc, S.; Arslan, B.; Gulcemal, S.; Gunnaz, S.; Cetinkaya, B.; Gulcemal, D. J. Org. Chem. 2019, 84, 6286.
doi: 10.1021/acs.joc.9b00632 |
(b) Wang, R.; Fan, H.; Zhao, W.; Li, F. Org. Lett. 2016, 18, 3558.
doi: 10.1021/acs.orglett.6b01518 |
|
[7] |
Das, S.; Maiti, D.; Sarkar, D. S. J. Org. Chem. 2018, 83, 2309.
doi: 10.1021/acs.joc.7b03198 |
[8] |
Zhang, G.; Wu, J.; Zeng, H.; Zhang, S.; Yin, Z.; Zheng, S. Org. Lett. 2017, 19, 1080.
doi: 10.1021/acs.orglett.7b00106 |
[9] |
Cho, C. S.; Seok, H. J.; Shim, S. C. J. Heterocycl. Chem. 2005, 42, 1219.
doi: 10.1002/jhet.v42:6 |
[10] |
Mahajan, A.; Arya, A.; Chundawat, T. S. Synth. Commun. 2019, 49, 1926.
doi: 10.1080/00397911.2019.1610776 |
[11] |
(a) Mierde, H. V.; Voort, P. V. D.; Vos, D. D.; Verpoort, F. Eur. J. Org. Chem. 2008, 1625.
|
(b) Mierde, H. V.; Ldoux, N.; Allaert, B.; Voort, P. V. D.; Drozdzak, R.; Vos, D. D.; Verpoort, F. New J. Chem. 2007, 31, 1572.
doi: 10.1039/b707292a |
|
[12] |
Yun, X. J.; Zhu, J. W.; Yan, J. Deng, W.; Yao, Z. J. Inorg. Chem. 2020, 59, 7841.
doi: 10.1021/acs.inorgchem.0c00955 |
[13] |
Huo, S.; Kong, S.; Zeng, G.; Feng, Q.; Hao, Z.; Han, Z.; Lin, J.; Lu, G. L. J. Mol. Catal. A: Chem. 2021, 514, 111773.
|
[14] |
Verma, A.; Hazra, S.; Dolui, P.; Elias, A. J. J. Org. Chem. 2021, 10, 626.
|
[15] |
(a) Zhang, Y.; Cheng, H.; Sun, Q.; Chen, H.; Yang, W.; Ma, M. J. Chem. Res. 2021, 45, 623.
doi: 10.1177/1747519820973601 |
(b) He, J.; Zhou, T.; Cao, Y.; Zhang, Y.; Yang, W.; Ma, M. J. Fluoresc. 2018, 28, 1121.
doi: 10.1007/s10895-018-2275-7 |
|
(c) Alam, M. N.; Moni, M. A.; Yu, J. Q; Beale, P.; Turner, P.; Proschogo, N.; Rahman, M. A.; Hossain, M. P.; Huq, P. Int. J. Mol. Sci. 2021, 22, 8471.
doi: 10.3390/ijms22168471 |
|
[16] |
Rodman, G. S.; Nagle, J. K. Inorg. Chim. Acta 1985, 105, 205.
doi: 10.1016/S0020-1693(00)85231-7 |
[17] |
(a) Vander, M. H.; Voot, P. V. D.; Vos, D. D.; Verpoort, F. Eur. J. Org. Chem. 2008, 1625.
|
(b) Subramanian, M.; Sundar, S.; Rengan, R. Appl. Organomet. Chem. 2018, 32, e4582.
|
|
[18] |
Ghosh, T. N.; Lasker, S. L.; Banerjee, S. J. Indian Chem. Soc. 1944, 21, 354.
|
[19] |
Bronson, R. T.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Lamb, R. D.; Dalley, N. K.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B. Tetrahedron 2004, 60, 11139.
doi: 10.1016/j.tet.2004.08.062 |
[20] |
Khusnutdinov, R. I.; Bayguzina, A. R.; Aminov, R. I. Russ. J Gen. Chem. 2016, 86, 1613.
doi: 10.1134/S1070363216070136 |
[21] |
Thinnes, C. C.; Tumber, A.; Yapp, C.; Scozzafava, G.; Yeh, T.; Chan, M. C.; Tran, T. A.; Hsu, K.; Tarhonskaya, H.; Walport, L. J.; Wilkins, S. E.; Martinez, E. D.; Muller, S.; Pugh, C. W.; Ratcliffe, P. J.; Brennan, P. E.; Kawamura, A.; Schofield, C. J. Chem. Commun. 2015, 51, 15458.
doi: 10.1039/C5CC06095H |
[22] |
Phillips, J. P.; Elbinger, R. L.; Merritt, L. L. J. Am. Chem. Soc. 1949, 71, 3986.
doi: 10.1021/ja01180a031 |
[23] |
Warner, V. D.; Sane, J. N.; Mirth, D. B.; Turesky, S. S.; Soloway, B. J. Med. Chem. 1976, 19, 167.
pmid: 812992 |
[24] |
Mirkovic, B.; Renko, M.; Turk, S.; Sosic, I.; Jevnikar, Z.; Obermajer, N.; Turk, D.; Gobec, S.; Kos, J. ChemMedChem 2011, 6, 1351.
doi: 10.1002/cmdc.v6.8 |
[25] |
Lauer, W. M.; Arnold, R. T.; Tiffany, B.; Tinker, J. J. Am. Chem. Soc. 1946, 68, 1268.
doi: 10.1021/ja01211a040 |
[26] |
Parua, S.; Sikari, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N. D. Org. Biomol. Chem. 2018, 16, 274.
doi: 10.1039/C7OB02670F |
[27] |
Xi, L; Zhang, R.; Zhang, L.; Chen, S.; Yu, X. Org. Biomol. Chem. 2015, 13, 3924.
doi: 10.1039/C5OB00075K |
[28] |
Xu, T.; Shao, Y.; Dai, L.; Yu, S.; Cheng, T.; Chen, J. J. Org. Chem. 2019, 84, 13604.
doi: 10.1021/acs.joc.9b01875 |
[29] |
Saxena, J. P.; Stafford, W. H.; Stafford, W. L. J. Chem. Soc. 1959, 1579.
|
[30] |
Qu, F; He, P.; Hu, R.; Cheng, X.; Wang, S.; Wu, J. Synth. Commun. 2015, 45, 2802.
doi: 10.1080/00397911.2015.1105982 |
[31] |
Xu, J.; Sun, J.; Zhao, J.; Huang, B.; Li, X.; Sun, Y. RSC Adv. 2017, 7, 36242.
doi: 10.1039/C7RA06425J |
[1] | Yang Li, Yanan Dong, Yuehui Li. Efficient Synthesis of Nitrile Compounds through Amide Conversion via N-Boroamide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 638-643. |
[2] | Sida Li, Xin Cui, Xing-Zhong Shu, Lipeng Wu. Titanium-Catalyzed Synthesis of 1,1-Diborylalkanes from Aryl Alkenes [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 631-637. |
[3] | Fakai Zou, Nengzhong Wang, Hui Yao, Hui Wang, Mingguo Liu, Nianyu Huang. Regio- and Stereo-selective Synthesis of 1β-/3R-Aryl Thiosugar [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 593-604. |
[4] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[5] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[6] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[7] | Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377. |
[8] | Jing Huang, Yihua Yang, Zhanhui Zhang, Shouxin Liu. Recent Progress on Green Methods and Technologies for Efficient Formation of Amide Bonds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 409-420. |
[9] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[10] | Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17. |
[11] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[12] | Mengzhu Li, Boying Meng, Wenjie Lan, Bin Fu. Synthesis of 2,3-Disubstituted Dihydrobenzofurans from o-Quinone Methides and Sulfur Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 195-203. |
[13] | Xianqiang Meng, Yi Yang, Wanjie Liang, Jingtao Wang, Rongkui Zhang, Hui Liu. Palladium-Catalyzed Regioselective Aryl Phenoxylation of Allenamide [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 224-231. |
[14] | Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172. |
[15] | Si Wen, Yuhao Ding, Qingyu Tian, Jin Ge, Guolin Cheng. Rhodium(III)-Catalyzed Synthesis of CF3-1H-benzo[de][1,8]naph-thyridines via C—H Activation/Annulation of Benzimidates and CF3-Imidoyl Sulfoxonium Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 291-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||