有机化学 ›› 2019, Vol. 39 ›› Issue (11): 3013-3025.DOI: 10.6023/cjoc201904044 上一篇 下一篇
综述与进展
封佳俊b, 易享炎b, 傅耀锋b, 于杨b, 黄菲ab*()
收稿日期:
2019-04-16
发布日期:
2019-07-09
通讯作者:
黄菲
E-mail:huangfei0208@yeah.net
基金资助:
Feng Jiajunb, Yi Xiangyanb, Fu Yaofengb, Yu Yangb, Huang Feiab*()
Received:
2019-04-16
Published:
2019-07-09
Contact:
Huang Fei
E-mail:huangfei0208@yeah.net
Supported by:
文章分享
α-羰基重氮化合物易于制备,在光照和加热等条件下脱去氮气形成高反应活性的卡宾中间体,通过卡宾介导的各类反应可以高效构筑多种化学键,其中N-H插入反应可以实现高效构筑C-N键,在有机合成和药物合成领域得到广泛应用.总结了在过渡金属、有机小分子、生物大分子催化及光和热条件下实现α-羰基重氮化合物对N-H键的插入反应的研究进展,主要介绍了反应机理和合成应用,并对发展前景进行展望.
封佳俊, 易享炎, 傅耀锋, 于杨, 黄菲. 基于α-羰基重氮化合物参与的N-H插入反应的研究进展[J]. 有机化学, 2019, 39(11): 3013-3025.
Feng Jiajun, Yi Xiangyan, Fu Yaofeng, Yu Yang, Huang Fei. Progress in N-H Insertion Reaction of α-Diazocarbonyl Compounds[J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3013-3025.
[1] |
(a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley-Inter- science, New York, 1998.
doi: 10.1093/nsr/nwu019 |
(b) Zhao, X.; Zhang, Y.; Wang, J. Chem. Commun. 2012, 48, 1016.
doi: 10.1093/nsr/nwu019 |
|
(c) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580.
doi: 10.1093/nsr/nwu019 |
|
(d) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
doi: 10.1093/nsr/nwu019 |
|
(e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981.
doi: 10.1093/nsr/nwu019 |
|
(f) Zhang, Z.; Wang, J. Chem. Commun. 2009, 5350.
doi: 10.1093/nsr/nwu019 |
|
(g) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
doi: 10.1093/nsr/nwu019 |
|
(h) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
doi: 10.1093/nsr/nwu019 |
|
(i) Candeias, N.; Paterna, R.; Gois, P. M. P. Chem. Rev. 2016, 116, 2937.
doi: 10.1093/nsr/nwu019 |
|
(j) Ren, Y.-Y.; Zhu, S.-F.; Zhou, Q.-L. Org. Biomol. Chem. 2018, 16, 3087.
doi: 10.1093/nsr/nwu019 |
|
(k) Zhang, D.; Hu, W. H. Chem. Rec. 2017, 17, 739.
doi: 10.1093/nsr/nwu019 |
|
(l) Wang, J. Chin. J. Org. Chem. 2001, 21, 980 (in Chinese).
doi: 10.1093/nsr/nwu019 |
|
(王剑波, 有机化学, 2001, 21, 980.)
doi: 10.1093/nsr/nwu019 |
|
[2] |
(a) Pelphrey, P.; Hansen, J.; Davies, H. M. L. Chem. Sci. 2010, 1, 254.
doi: 10.1039/c0sc00109k |
(b) Sambasivanand, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568.
doi: 10.1039/c0sc00109k |
|
(c) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.-Eur. J. 2016, 22, 3447.
doi: 10.1039/c0sc00109k |
|
(d) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
doi: 10.1039/c0sc00109k |
|
(e) Xu, H.; Li, Y.-P.; Cai, Y.; Wang, G.-P.; Zhu, S. F.; Zhou, Q.-L., J. Am. Chem. Soc. 2017, 139, 7697.
doi: 10.1039/c0sc00109k |
|
(f) Maas, G. Chem. Soc. Rev. 2004, 33, 183.
doi: 10.1039/c0sc00109k |
|
[3] |
(a) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
doi: 10.1021/cr950022h |
(b) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263.
doi: 10.1021/cr950022h |
|
(c) Yakura, T.; Ozono, A.; Matsui, K.; Yamashita, M.; Fujiwara, T. Synlett 2013, 24, 65.
doi: 10.1021/cr950022h |
|
(d) Moody, C. J.; Taylor, R. J. Tetrahedron 1990, 46, 6525.
doi: 10.1021/cr950022h |
|
(e) Roberts, E.; Sançon, J. P.; Sweeney, J. B. Org. Lett. 2005, 7, 2075.
doi: 10.1021/cr950022h |
|
[4] |
(a) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.
doi: 10.1038/nature17651 |
(b) Liao, K.; Pickel, T. C.; Boyarskikh, V.; Bacsa, J.; Musaev D. G.; Davies, H. M. L. Nature 2017, 551, 609.
doi: 10.1038/nature17651 |
|
(c) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 9792.
doi: 10.1038/nature17651 |
|
[5] |
(a) Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc., Perkin Trans. 1 1999, 2277.
doi: 10.1021/ol010075n |
(b) Clapham, B.; Spanka, C.; Janda, K. D. Org. Lett. 2001, 3, 2173.
doi: 10.1021/ol010075n |
|
(c) Matsushita, H.; Lee, S.-H.; Yoshida, K.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. Org. Lett. 2004, 6, 4627.
doi: 10.1021/ol010075n |
|
(d) Pavlyuk, O.; Teller, H.; McMills, M. C. Tetrahedron Lett. 2009, 50, 2716.
doi: 10.1021/ol010075n |
|
[6] |
(a) Tan, F.; Liu, X.; Hao, X.; Tang, Y.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 6930.
doi: 10.1021/acscatal.6b02184 |
(b) Zhang, Y.; Yao, Y.; He, L.; Liu, Y.; Shi, L. Adv. Synth. Catal. 2017, 359, 2754.
doi: 10.1021/acscatal.6b02184 |
|
(c) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546.
doi: 10.1021/acscatal.6b02184 |
|
[7] |
(a) Zhang, Y.-Z.; Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Zhou, Q.-L. Chem. Commun. 2009, 5362.
doi: 10.1007/BF00808368 |
(b) Brunner, H.; Wutz, K.; Doyle, M. P. Monatsh. Chem. 1990, 121, 755.
doi: 10.1007/BF00808368 |
|
[8] |
(a) Neupane, P.; Li, X.; Jung, J. H.; Lee, Y. R.; Kim, S. H. Tetrahedron 2012, 68, 2496.
doi: 10.1016/j.tet.2012.01.060 |
(b) Zrig, S.; Andrioletti, B.; Rose, E.; Colin, J. Tetrahedron Lett. 2005, 46, 1103.
doi: 10.1016/j.tet.2012.01.060 |
|
(c) Dyer, J.; Jockusch, S.; Balsanek, V.; Sames, D.; Turro, N. J. Org. Chem. 2005, 70, 2143.
doi: 10.1016/j.tet.2012.01.060 |
|
(d) Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455.
doi: 10.1016/j.tet.2012.01.060 |
|
[9] | Yudin, A. K. Catalyzed Carbon— Heteroatom Bond Formation, Wiley-VCH, Weinheim, 2011. |
[10] |
Burtoloso A. C. B. Dias R. M. P. Bernardim B. Acc. Chem. Res. 2015 48 921.
doi: 10.1021/ar500433t |
[11] |
Cama L. D. Christensen B. G. Tetrahedron Lett. 1978 19 4233.
doi: 10.1016/S0040-4039(01)95189-5 |
[12] |
Salzmann T. N. Ratcliffe R. W. Christensen B. G. Bouffard F. A. J. Am. Chem. Soc. 1980 102 6161.
doi: 10.1021/ja00539a040 |
[13] |
Ratcliffe R. W. Salzmann T. N. Christensen B. G. Tetrahedron Lett. 1980 21 31.
doi: 10.1016/S0040-4039(00)93616-5 |
[14] |
Xu B. Zhu S. F. Zuo X. D. Zhang Z. C. Zhou Q. L. Angew. Chem., Int. Ed. 2014 126 3994.
doi: 10.1002/ange.201400236 |
[15] |
(a) Davies, J. R.; Kane, P. D.; Moody, C. J. J. Org. Chem. 2005, 70, 7305.
doi: 10.1021/jo0509760 |
(b) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am. Chem. Soc. 2000, 122, 3301.
doi: 10.1021/jo0509760 |
|
(c) Garcia, C. F.; McKervey, M. A.; Ye, T. Chem. Commun. 1996, 1465.
doi: 10.1021/jo0509760 |
|
(d) Lee, S.-H.; Yoshida, K.; Matsushita, H.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. J. Org. Chem. 2004, 69, 8829.
doi: 10.1021/jo0509760 |
|
(e) Liu, K.; Zhu, C.; Min, J.; Peng, S.; Xu, G.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 12962.
doi: 10.1021/jo0509760 |
|
(f) Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152.
doi: 10.1021/jo0509760 |
|
[16] |
Yates P. J. Am. Chem. Soc. 1952 74 5376.
doi: 10.1021/ja01141a047 |
[17] |
(a) Zhang, X.; Sui, Z. Tetrahedron Lett. 2006, 47, 5953.
doi: 10.1016/j.tetlet.2006.06.053 |
(b) Livant, P.; Jie, Y.; Wang, X. Tetrahedron Lett. 205, 46, 2113.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(c) Chanthamath, S.; Thongjareun, S.; Shibatomi, K.; Iwasa, S. Tetrahedron Lett. 2012, 53, 4862.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(d) Wang, Y.; Zhu, S. Org. Lett. 2003, 5, 745.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(e) Vyavahare, V. P.; Chattopadhyay, S.; Puranik, V. G.; Dhavale, D. D. Synlett 2007, 559.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(f) Saito, H.; Uchiyama, T.; Miyake, M.; Anada, M.; Hashimoto, S.; Takabatake, T.; Miyairi, S. Heterocycles 2010, 81, 1149.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(g) Lian, X.; Meng, J.; Han, Z. Org. Lett. 2016, 18, 4270.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(h) Huang, H.; Wang, Y.; Chen, Z.; Hu, W. Adv. Synth. Catal. 2005, 347, 531.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(i) Medvedev, J. J; Galkina, O. S.; Klinkova, A. A.; Giera, D. S.; Hennig, L.; Schneider, C.; Nikolaev, V. A. Org. Biomol. Chem. 2015, 13, 2640.
doi: 10.1016/j.tetlet.2006.06.053 |
|
(j) Xu, X. F.; Zavalij, P. Y.; Doyle, M. P. Angew. Chem., Int. Ed. 2012, 51, 9829.
doi: 10.1016/j.tetlet.2006.06.053 |
|
[18] |
Saegusa T. Ito Y. Kobayashi S. Hirota K. Jhimizu T. Tetrahedron Lett. 1966 7 6131.
doi: 10.1016/S0040-4039(00)70153-5 |
[19] |
(a) Ramakrishna, K.; Sivasankar, C. J. Organomet. Chem. 2016, 805, 122.
doi: 10.1021/acs.joc.6b01249 |
(b) Ramakrishna, K.; Sivasankar, C. J. Org. Chem. 2016, 81, 6609.
doi: 10.1021/acs.joc.6b01249 |
|
[20] | Tishinov K. Schmidt K. Häussinger D. Gillingham D. G. Angew. Chem., Int. Ed. 2012 51 1200. |
[21] |
Li H. Cheng P. Jiang L. Yang J. L. Zu L. S. Angew. Chem., Int. Ed. 2017 56 2754.
doi: 10.1002/anie.201611830 |
[22] | Tishinov K. Schmidt K. Häussinger D. Gillingham D. G. Angew. Chem., Int. Ed. 2012 51 1200. |
[23] |
(a) Chan, K. H.; Guan, X.; Lo, V. K.; Che, C. M. Angew. Chem., Int. Ed. 2014, 53, 2982.
doi: 10.1002/anie.v53.11 |
(b) Ho, C.-M.; Zhang, J.-L.; Zhou, C.-Y.; Chan, O.-Y.; Yan, J. J.; Zhang, F.-Y.; Huang, J.-S.; Che, C.-M. J. Am. Chem. Soc. 2010, 132, 1886.
doi: 10.1002/anie.v53.11 |
|
[24] | Aviv I. Gross Z. Chem. Commun. 2006 4477. |
[25] |
Mangion I. K. Nwamba I. K. Shevlin M. Huffman M. A. Org. Lett. 2009 11 3566.
doi: 10.1021/ol901298p |
[26] |
Anding B. J. Woo L. K. Organometallics 2013 32 2599.
doi: 10.1021/om400098v |
[27] |
Ramakrishna K. Sivasankar C. Org. Biomol. Chem. 2017 15 2392.
doi: 10.1039/C7OB00177K |
[28] |
Bachmann S. Fielenbach D. Jørgensen K. A. Org. Biomol. Chem. 2004 2 3044.
doi: 10.1039/B412053A |
[29] |
Liu B. Zhu S. F. Zhang W. Chen C. Zhou Q.-L. J. Am. Chem. Soc. 2007 129 5834.
doi: 10.1021/ja0711765 |
[30] |
Lee E. C. Fu G. C. J. Am. Chem. Soc. 2007 129 12066.
doi: 10.1021/ja074483j |
[31] |
Hou Z.-R. Wang J. He P. Wang J. Qin B. Liu X.-H. Lin L.-L. Feng X.-M. Angew. Chem., Int. Ed. 2010 49 4763.
doi: 10.1002/anie.201001686 |
[32] |
Zhang Z.-H. Wang J.-B. Tetrahedron 2008 64 6577.
doi: 10.1016/j.tet.2008.04.074 |
[33] |
Zhu S.-F. Xu B. Wang G.-P. Zhou Q.-L. J. Am. Chem. Soc. 2012 134 436.
doi: 10.1021/ja2084493 |
[34] |
(a) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 1015.
doi: 10.1021/ar300101k |
(b) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
doi: 10.1021/ar300101k |
|
(c) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9, 2047.
doi: 10.1021/ar300101k |
|
(d) Kudirka, R.; Devine, S. K. J.; Adams, C. S.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2009, 48, 3677.
doi: 10.1021/ar300101k |
|
[35] |
(a) Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G. Y.; Ma, B.; Sun, J. T. Org. Biomol. Chem. 2013, 11, 5998.
doi: 10.1039/c3ob41331d |
(b) Zhu, Y.; Liu, X.; Dong, S.; Zhou, Y.; Li, W.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2014, 53, 1636.
doi: 10.1039/c3ob41331d |
|
(c) Arredondo, V.; Hiew, S. C.; Gutman, E. S.; Premachandra, I. D. U. A.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2017, 56, 4156.
doi: 10.1039/c3ob41331d |
|
[36] |
Xu B. Zhu S. F. Xie X. L. Shen J. J. Zhou Q. L. Angew. Chem., Int. Ed. 2011 50 11483.
doi: 10.1002/anie.201105485 |
[37] |
Guo J. X. Zhou T. Xu B. Zhu S. F. Zhou Q. L. Chem. Sci. 2016 7 1104.
doi: 10.1039/C5SC03558A |
[38] |
Wang Y. H. Zhu Y. X. Chen Z. Y. Mi A. Q. Hu W. H. Doyle M. P. Org. Lett. 2003 5 3923.
doi: 10.1021/ol035490p |
[39] |
(a) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lü, F.-P.; Xin, G.; Jiang, L.-Q.; Zhang, Z.-Y.; Hu, W.-H. J. Am. Chem. Soc. 2011, 133, 8428.
doi: 10.1021/ja201589k |
(b) Jiang, J.; Ma, X.-C.; Liu, S.-Y.; Qian, Y.; Lü, F.-P.; Qiu, L.; Wu, X.; Hu, W.-H. Chem. Commun. 2013, 49, 4238.
doi: 10.1021/ja201589k |
|
(c) Jiang, L.-Q.; Zhang, D.; Wang, Z.-Q.; Hu, W.-H. Synthesis 2013, 45, 452.
doi: 10.1021/ja201589k |
|
(d) Ma, X.-C.; Jiang, J.; Lü, S.-Y.; Yao, W.-F.; Yang, Y.; Liu, S.-Y.; Xia, F.; Hu, W.-H. Angew. Chem., Int. Ed. 2014, 53, 13136.
doi: 10.1021/ja201589k |
|
[40] |
(a) Ooi, T.; Kameda, M.; Fuji, J.; Maruoka, K. Org. Lett. 2004, 6, 2397.
doi: 10.1021/ol049215u |
(b) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
doi: 10.1021/ol049215u |
|
(c) Puglisi, A.; Raimondi, L.; Benaglia, M.; Bonsignore, M.; Rossi, S. Tetrahedron Lett. 2009, 50, 4340.
doi: 10.1021/ol049215u |
|
[41] |
Nicolle S. M. William L. Hayes C. J. Moody C. J. Angew. Chem., Int. Ed. 2016 55 3749.
doi: 10.1002/anie.201511433 |
[42] |
(a) So, S. S.; Mattson, A. E. J. Am. Chem. Soc. 2012, 134, 8798.
doi: 10.1021/ja3031054 |
(b) Auvil, T. J.; So, S. S.; Mattson, A. E. Angew. Chem., Int. Ed. 2013, 52, 11317.
doi: 10.1021/ja3031054 |
|
(c) So, S. S.; Oottikkal, S.; Badjić, J. D.; Hadad, C. M.; Mattson, A. E. J. Org. Chem. 2014, 79, 4832.
doi: 10.1021/ja3031054 |
|
[43] |
Wang Z. J. Peck N. E. Renata H. Arnold F. H. Chem. Sci. 2014 5 598.
doi: 10.1039/C3SC52535J |
[44] |
Sreenilayam G. Fasan R. Chem. Commun. 2015 51 1532.
doi: 10.1039/C4CC08753D |
[45] |
Xu X. Li C. Tao Z. Pan Y. J. Adv. Synth. Catal. 2015 357 3341.
doi: 10.1002/adsc.201500418 |
[46] |
Hansen S. R. Spangler J. E. Hansen J. H. Davies H. M. L. Org. Lett. 2012 14 4626.
doi: 10.1021/ol3020754 |
[47] |
Jurberg I. D. Davies H. M. L. Chem. Sci. 2018 9 5112.
doi: 10.1039/C8SC01165F |
[1] | 夏登鹏, 罗锦昀, 何林, 蔡志华, 杜广芬. 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024, 44(2): 622-630. |
[2] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[3] | 蔡远林, 吕亚, 聂桂花, 金智超, 池永贵. 氮杂环卡宾催化合成氰基化合物的研究进展[J]. 有机化学, 2023, 43(9): 3135-3145. |
[4] | 许晓萍, 张翼飞, 莫小渝, 江俊. 铑催化3-重氮吲哚-2-亚胺与吡唑啉酮的C—H官能团化反应制备3-吡唑基吲哚[J]. 有机化学, 2023, 43(7): 2519-2527. |
[5] | 杨亮茹, 郭梦丽, 袁金伟, 王佳美, 夏宇婷, 肖咏梅, 毛璞. 钳形氮杂环卡宾金属络合物的研究进展[J]. 有机化学, 2023, 43(6): 2002-2025. |
[6] | 陈志豪, 范奇, 尹标林, 李清江, 王洪根. α-硼取代羰基类化合物的合成进展[J]. 有机化学, 2023, 43(5): 1706-1712. |
[7] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[8] | 黄华, 李鑫, 苏建科, 宋秋玲. 二氟卡宾参与下从邻乙烯基苯胺出发构建3-取代吲哚酮类化合物[J]. 有机化学, 2023, 43(3): 1146-1156. |
[9] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[10] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[11] | 刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635. |
[12] | 涂志, 余金生, 周剑. 溴二氟甲基三甲基硅烷的合成及其在有机合成中的应用[J]. 有机化学, 2023, 43(10): 3491-3507. |
[13] | 巴聃, 程国林. 蓝光诱导的1,3-二酮C(CO)—C键卡宾插入反应[J]. 有机化学, 2022, 42(9): 2888-2897. |
[14] | 赵薇, 刘京, 何向奎, 蒋豪, 陆良秋, 肖文精. 氮杂环卡宾(NHC)催化的联芳基二醛去对称化构建轴手性醛类化合物[J]. 有机化学, 2022, 42(8): 2504-2514. |
[15] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||