有机化学 ›› 2021, Vol. 41 ›› Issue (10): 3880-3891.DOI: 10.6023/cjoc202105053 上一篇 下一篇
所属专题: 南开大学化学学科创立100周年; 热点论文虚拟合集
综述与进展
收稿日期:
2021-05-31
修回日期:
2021-07-12
发布日期:
2021-07-26
通讯作者:
栾玉新, 叶萌春
基金资助:
Fengping Zhang, Yuxin Luan(), Mengchun Ye()
Received:
2021-05-31
Revised:
2021-07-12
Published:
2021-07-26
Contact:
Yuxin Luan, Mengchun Ye
Supported by:
文章分享
过渡金属催化的C—P键活化转化为有机膦化合物的合成提供了一条经济、高效的途径, 近年来受到了越来越多的关注. 然而由于C—P键较高的键能和P原子强的配位性能, C—P键活化一直较为挑战. 采用不同的底物预活化方法和各类催化剂, 过渡金属催化的C—P键活化转化已经取得了显著的进展. 本综述将对该领域的发展进行总结, 按照反应机理和底物预活化策略的不同, 分类阐述这些反应的类型, 发展、特点和机理等.
张凤萍, 栾玉新, 叶萌春. 过渡金属催化的C—P键活化[J]. 有机化学, 2021, 41(10): 3880-3891.
Fengping Zhang, Yuxin Luan, Mengchun Ye. Transition Metal-Catalyzed C—P Bond Activation[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3880-3891.
[1] |
(a) Fields, S. C. Tetrahedron 1999, 55, 12237.
doi: 10.1016/S0040-4020(99)00701-2 |
(b) Engel, R. Chem. Rev. 1977, 77, 349.
doi: 10.1021/cr60307a003 |
|
[2] |
(a) Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953, 580, 44.
doi: 10.1002/(ISSN)1099-0690 |
(b) Lu, X. Y.; Zhang, C. M.; Xu, Z. R. Acc. Chem. Res. 2001, 34, 535.
doi: 10.1021/ar000253x |
|
[3] |
(a) Trofimov, B. A.; Arbuzova, S. N.; Gusarova, N. K. Russ. Chem. Rev. 1999, 68, 215.
doi: 10.1070/RC1999v068n03ABEH000464 |
(b) Honaker, M. T.; Hovland, J. M.; Salvatore, R. N. Curr. Org. Chem. 2007, 4, 31.
|
|
(c) Schwan, A. L. Chem. Soc. Rev. 2004, 33, 218.
doi: 10.1039/B307538A |
|
[4] |
(a) Jiang, T.; Zhang, H.; Ding, Y.; Zou, S.; Chang, R.; Huang, H. Chem. Soc. Rev. 2020, 49, 1487.
doi: 10.1039/C9CS00539K pmid: 17173146 |
(b) Lee, Y. H.; Morandi, B. Coord. Chem. Rev. 2019, 386, 96.
doi: 10.1016/j.ccr.2018.12.001 pmid: 17173146 |
|
(c) Wang, L.; Chen, H.; Duan, Z. Chem. Asian J. 2018, 13, 2164.
doi: 10.1002/asia.201800307 pmid: 17173146 |
|
(d) Tappe, F. M. J.; Trepohl, V. T.; Oestreich, M. Synthesis 2010, 3037.
pmid: 17173146 |
|
(e) Macgregor, S. A. Chem. Soc. Rev. 2007, 36, 67.
pmid: 17173146 |
|
[5] |
Wei, K.; Luo, K.; Liu, F.; Wu, L.; Wu, L.-Z. Org. Lett. 2019, 21, 1994.
doi: 10.1021/acs.orglett.9b00071 |
[6] |
(a) Liu, T.; Zhu, J.; Sun, X.; Cheng, L.; Wu, L. Adv. Synth. Catal. 2019, 361, 3532.
doi: 10.1002/adsc.v361.15 |
(b) Hou, F.; Du, X.-P.; Alduma, A. I.; Li, Z.-F.; Huo, C.-D. Wang, X.-C.; Wu, X.-F.; Quan, Z.-J. Adv. Synth. Catal. 2020, 362, 4755.
doi: 10.1002/adsc.v362.21 |
|
(c) Song, Y.; Wang, L.; Duan, Z.; Mathey, F. Chin. Chem. Lett. 2020, 31, 329.
doi: 10.1016/j.cclet.2019.05.053 |
|
[7] |
For selected reviews on C—H activation, see: (a) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
doi: 10.1021/acs.chemrev.8b00507 pmid: 28125210 |
[34] |
(b) Sahoo, D.; Yoo, C.; Lee, Y. J. Am. Chem. Soc. 2018, 140, 2179.
doi: 10.1021/jacs.7b11074 |
[35] |
Zhou, Y.; Gan, Z. J.; Su, B.; Li, J.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 5722.
doi: 10.1021/acs.orglett.5b02926 |
[36] |
Zhu, J.; Mao, M.; Ji, H.-J.; Xu, J.-Y.; Wu, L. Org. Lett. 2017, 19, 1946.
doi: 10.1021/acs.orglett.7b00213 |
[37] |
For the coordination of phosphine oxide with metals, see: (a) Veith, M.; Huch, V. J. Organomet. Chem. 1985, 293, 161.
doi: 10.1016/0022-328X(85)80284-9 |
(b) Zabula, A. V.; Pape, T.; Hepp, A.; Hahn, F. E. Dalton Trans. 2008, 5886.
|
|
[38] |
Nakazawa, H.; Matsuoka, Y.; Yamaguchi, H.; Kuroiwa, T.; Miyoshi, K.; Yoneda, H. Organometallics 1989, 8, 2272.
doi: 10.1021/om00111a029 |
[39] |
Yu, R.; Chen, X.; Martin, S. F.; Wang, Z. Org. Lett. 2017, 19, 1808.
doi: 10.1021/acs.orglett.7b00579 |
[40] |
Chen, X.; Liu, X.; Zhu, H.; Wang, Z. Tetrahedron 2021, 81, 131912.
doi: 10.1016/j.tet.2020.131912 |
[41] |
Liedtke, J.; Rüegger, H.; Loss, S.; Grützmacher, H. Angew. Chem., Int. Ed. 2000, 39, 2478.
doi: 10.1002/(ISSN)1521-3773 |
[42] |
Heyn, R. H.; Görbitz, C. H. Organometallics 2002, 21, 2781.
doi: 10.1021/om0200712 |
[43] |
Derrah, E. J.; Ladeira, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. Chem. Commun. 2011, 47, 8611.
doi: 10.1039/c1cc12477c |
[44] |
Abatjoglou, A. G.; Bryant, D. R. Organometallics 1984, 3, 932.
doi: 10.1021/om00084a019 |
[45] |
Sabater, S.; Page, M. J.; Mahon, M. F.; Whittlesey, M. K. Organometallics 2017, 36, 1776.
doi: 10.1021/acs.organomet.7b00129 |
[46] |
Inoue, A.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 1484.
doi: 10.1021/ja026758v |
[47] |
Masuda, K.; Sakiyama, N.; Tanaka, R.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2011, 133, 6918.
doi: 10.1021/ja201337x pmid: 21500851 |
[7] |
(b) Zhang, Q.; Shi, B. F. Acc. Chem. Res. 2021, 54, 2750.
doi: 10.1021/acs.accounts.1c00168 pmid: 28125210 |
(c) He, J.; Wasa, M.; Chan, Kelvin S. L.; Shao, Q.; Yu, J. Q. Chem. Rev. 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 pmid: 28125210 |
|
(d) Davison, R. T.; Kuker, E. L.; Dong, V. M. Acc. Chem. Res. 2021, 54, 1067.
doi: 10.1021/acs.accounts.0c00731 pmid: 28125210 |
|
(e) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
doi: 10.1021/acs.accounts.5b00092 pmid: 28125210 |
|
(f) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117, 9163.
doi: 10.1021/acs.chemrev.6b00661 pmid: 28125210 |
|
(g) Dong, Z.; Ren, Z.; Thompson, S.; Xu, Y.; Dong, G. B. Chem. Rev. 2017, 117, 9333.
doi: 10.1021/acs.chemrev.6b00574 pmid: 28125210 |
|
(h) Hu, Y.; Wang, C. Acta Phys.-Chim. Sin. 2019, 35, 913.
doi: 10.3866/PKU.WHXB201809036 pmid: 28125210 |
|
(i) Wang, Y.-X.; Ye, M. Sci. China Chem. 2018, 61, 1004.
doi: 10.1007/s11426-018-9333-x pmid: 28125210 |
|
(j) Wang, R.; Luan, Y.; Ye, M. Chin. J. Chem. 2019, 37, 720.
doi: 10.1002/cjoc.v37.7 pmid: 28125210 |
|
(k) Li, R.; Xu, X.; Ye, M. Chin. J. Org. Chem. 2020, 40, 3196. (in Chinese)
doi: 10.6023/cjoc202005056 pmid: 28125210 |
|
(李然, 徐学涛, 叶萌春, 有机化学, 2020, 40, 3196.)
doi: 10.6023/cjoc202005056 pmid: 28125210 |
|
(l) Zhao, M.; Lu, W. Acta Phys.-Chim. Sin. 2019, 35, 977.
doi: 10.3866/PKU.WHXB201811045 pmid: 28125210 |
|
[8] |
For selected reviews on C—C activation, see: (a) Xia, Y.; Dong, G. Nat. Rev. Chem. 2020, 4, 600.
doi: 10.1038/s41570-020-0218-8 pmid: 26044343 |
(b) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
doi: 10.1021/acs.chemrev.5b00138 pmid: 26044343 |
|
(c) Song, F. J.; Gou, T.; Wang, B. Q.; Shi, Z. J. Chem. Soc. Rev. 2018, 47, 7078.
doi: 10.1039/C8CS00253C pmid: 26044343 |
|
(d) Murakami, M.; Ishida, N. Chem. Rev. 2021, 121, 264.
doi: 10.1021/acs.chemrev.0c00569 pmid: 26044343 |
|
(e) Wang, W.; Xie, J. Chin. J. Org. Chem. 2020, 40, 1396. (in Chinese)
doi: 10.6023/cjoc202000023 pmid: 26044343 |
|
(王文亮, 谢劲, 有机化学, 2020, 40, 1396.)
doi: 10.6023/cjoc202000023 pmid: 26044343 |
|
[9] |
For selected reviews on C—O activation, see: (a) Liu, F.; Jiang, H. J.; Zhou, Y.; Shi, Z. J. Chin. J. Chem. 2020, 38, 855.
doi: 10.1002/cjoc.v38.8 |
(b) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717.
doi: 10.1021/acs.accounts.5b00051 |
|
(c) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
doi: 10.1021/ar500345f |
|
(d) Goossen, L. J.; Goossen, K.; Stanciu, C. Angew. Chem., Int. Ed. 2009, 48, 3569.
doi: 10.1002/anie.v48:20 |
|
[10] |
For selected reviews on C—N activation, see: (a) García-Cárceles, J.; Bahou, K. A.; Bower, J. F. ACS Catal. 2020, 10, 12738.
doi: 10.1021/acscatal.0c03341 |
(b) Wang, Q. J.; Su, Y. J.; Li, L. X.; Huang, H. M. Chem. Soc. Rev. 2016, 45, 1257.
doi: 10.1039/C5CS00534E |
|
(c) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109.
doi: 10.1021/acscatal.0c03334 |
|
(d) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899.
doi: 10.1039/C8CS00335A |
|
(e) Gao, Y.; Ji, C.-L.; Hong, X. Sci. China Chem. 2017, 60, 1413.
doi: 10.1007/s11426-017-9025-1 |
|
[11] |
O'Keefe, D. F.; Dannock, M. C.; Marcuccio, S. M. Tetrahedron Lett. 1992, 33, 6679.
doi: 10.1016/S0040-4039(00)61017-1 |
[12] |
Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 24, 1101.
doi: 10.1246/cl.1995.1101 |
[13] |
Brunker, T. J.; Moncarz, J. R.; Glueck, D. S.; Zakharov, L. N.; Golen, J. A.; Rheingold, A. L. Organometallics 2004, 23, 2228.
doi: 10.1021/om049818+ |
[14] |
Marinetti, A.; Carmichael, D. Chem. Rev. 2002, 102, 201.
pmid: 11782133 |
[15] |
Landis, C. R.; Nelson, R. C; Jin, W.; Bowman, A. C. Organometallics 2006, 25, 1377.
doi: 10.1021/om050922g |
[16] |
Rünzi, T.; Tritschler, U.; Roesle, P.; Göttker-Schnetmann, I.; Möller, H. M.; Caporaso, L.; Poater, A.; Cavallo, L.; Mecking, S. Organometallics 2012, 31, 8388.
doi: 10.1021/om300969d |
[17] |
Alcazar-Roman, L. M.; Hartwig, J. F.; Rheingold, A. L.; Liable-Sands, L. M.; Guzei, I. A. J. Am. Chem. Soc. 2000, 122, 4618.
doi: 10.1021/ja9944599 |
[18] |
Ge, S. Z.; Green, R. A.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 1617.
doi: 10.1021/ja411911s |
[19] |
Ai, P. F.; Danopoulos, A. A.; Braunstein, P. Dalton Trans. 2014, 43, 1957.
doi: 10.1039/C3DT53025F |
[20] |
Qin, H.-L.; Leng, J.; Zhang, W.; Kantchev, E. A. B. Dalton Trans. 2018, 47, 2662.
doi: 10.1039/c7dt04759b pmid: 29410986 |
[21] |
Vicente, J.; Abad, J.-A.; López-Nicolás, R.-M.; Jones, P. G. Organometallics 2004, 23, 4325.
doi: 10.1021/om0496683 |
[22] |
Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem., Int. Ed. 2005, 44, 6166.
doi: 10.1002/(ISSN)1521-3773 |
[23] |
Zhang, X.; McNally, A. Angew. Chem., Int. Ed. 2017, 56, 9833.
doi: 10.1002/anie.v56.33 |
[24] |
Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org. Chem. 1995, 60, 12.
doi: 10.1021/jo00106a006 |
[25] |
Kong, K. C.; Cheng, C. H. J. Am. Chem. Soc. 1991, 113, 6313.
doi: 10.1021/ja00016a082 |
[26] |
Goodson, F. E.; Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1997, 119,12441.
doi: 10.1021/ja972554g |
[27] |
(a) Kwong, F. Y.; Chan, K. S. Chem. Commun. 2000, 1069.
|
(b) Kwong, F. Y.; Lai, C. W.; Tian, Y.; Chan, K. S. Tetrahedron Lett. 2000, 41,10285.
doi: 10.1016/S0040-4039(00)01850-5 |
|
(c) Kwong, F. Y.; Lai, C. W.; Yu, M.; Chan, K. S. Tetrahedron 2004, 60, 5635.
doi: 10.1016/j.tet.2004.04.085 |
|
[28] |
Baba, K.; Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11892.
doi: 10.1002/anie.v52.45 |
[29] |
Baba, K.; Tobisu, M.; Chatani, N. Org. Lett. 2015, 17, 70.
doi: 10.1021/ol503252t |
[30] |
Zhou, H.; Li, J.; Yang, H.; Xia, C.; Jiang, G. Org. Lett. 2015, 17, 4628.
doi: 10.1021/acs.orglett.5b02366 pmid: 26382152 |
[31] |
Yu, R.; Chen, X.; Wang, Z. Tetrahedron Lett. 2016, 57, 3404.
doi: 10.1016/j.tetlet.2016.06.088 |
[32] |
Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Science 2017, 356, 1059.
doi: 10.1126/science.aam9041 |
[33] |
Cao, J.; Huang, X.; Wu, L. Chem. Commun. 2013, 49, 7747.
doi: 10.1039/c3cc43640c |
[34] |
For nickel intermediates with negative charge, see: (a) Gartia, Y.; Ramidi, P.; Jones, D. E.; Pulla, S.; Ghosh, A. Catal. Lett. 2014, 144, 507.
doi: 10.1007/s10562-013-1170-8 |
[1] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[2] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[3] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[4] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[5] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[6] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[7] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[8] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[9] | 贾海瑞, 邱早早. 过渡金属催化硼-氢键活化合成含硼-杂原子键邻碳硼烷衍生物的研究进展[J]. 有机化学, 2023, 43(3): 1045-1068. |
[10] | 吴孔川, 卢铠洪, 林建斌, 张慧君. 莱啉酰亚胺类化合物的邻位C—H键功能化研究进展[J]. 有机化学, 2023, 43(3): 1000-1011. |
[11] | 孙婧, 张萌萌, 锅小龙, 王琪, 王陆瑶. 无过渡金属条件下二芳基硒化合物的合成[J]. 有机化学, 2023, 43(12): 4251-4260. |
[12] | 秦思凝. 芳香卤代物C—S偶联反应的研究进展[J]. 有机化学, 2023, 43(11): 3761-3783. |
[13] | 刘敏, 亓丽萍, 赵东兵. 过渡金属催化硅杂环丁烷的C—Si键断裂反应研究进展[J]. 有机化学, 2023, 43(10): 3508-3525. |
[14] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[15] | 刘东汉, 鲁席杭, 柴张梦洁, 杨浩琦, 孙瑜琳, 余富朝. 构建2H-吡咯-2-酮骨架的研究进展[J]. 有机化学, 2023, 43(1): 57-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||