有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3640-3657.DOI: 10.6023/cjoc202205001 上一篇 下一篇
综述与进展
收稿日期:
2022-05-01
修回日期:
2022-06-13
发布日期:
2022-06-29
通讯作者:
杨武林
基金资助:
Hui Yan, Man Zhang, Lin Li, Teng Hu, Wulin Yang()
Received:
2022-05-01
Revised:
2022-06-13
Published:
2022-06-29
Contact:
Wulin Yang
Supported by:
文章分享
螺环缩酮是一类结构独特的螺环骨架, 其作为核心结构单元广泛存在于天然产物、生物活性分子和优势手性配体中, 发展其高效的合成方法一直以来都是有机化学领域的研究热点. 尤其是近10年来, 手性螺环缩酮化合物的催化不对称合成取得了重要突破. 根据反应类型划分, 总结了手性螺环缩酮化合物的催化不对称合成研究进展, 并对该领域的研究前景进行了展望.
闫辉, 张曼, 李琳, 胡腾, 杨武林. 手性螺环缩酮化合物的不对称催化合成研究进展[J]. 有机化学, 2022, 42(11): 3640-3657.
Hui Yan, Man Zhang, Lin Li, Teng Hu, Wulin Yang. Advances in the Catalytic Asymmetric Synthesis of Chiral Spiroketals[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3640-3657.
[1] |
(a) Zhu, S.-F.; Zhou, Q.-L. In Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH, Weinheim, 2011, pp. 137-170.
pmid: 21975423 |
(b) Ding, K.; Han, Z.; Wang, Z. Chem. Asian J. 2009, 4, 32.
doi: 10.1002/asia.200800192 pmid: 21975423 |
|
(c) Ramon, R. Chem. Soc. Rev. 2012, 41, 1060.
doi: 10.1039/c1cs15156h pmid: 21975423 |
|
[2] |
(a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1617.
doi: 10.1021/cr00097a015 |
(b) Wilsdorf, M.; Reissig, H. U. Angew. Chem., Int. Ed. 2012, 51, 9486.
doi: 10.1002/anie.201203847 |
|
[3] |
(a) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105, 4406.
doi: 10.1021/cr050559n pmid: 31478048 |
(b) Sperry, J.; Wilson, Z. E.; Rathwell, D. C. K.; Brimble, M. A. Nat. Prod. Rep. 2010, 27, 1117.
doi: 10.1039/b911514p pmid: 31478048 |
|
(c) Atkinson, D. J.; Brimble, M. A. Nat. Prod. Rep. 2015, 32, 811.
doi: 10.1039/c4np00153b pmid: 31478048 |
|
(d) Zhang, F.-M.; Zhang, S.-Y.; Tu, Y.-Q. Nat. Prod. Rep. 2018, 35, 75.
doi: 10.1039/C7NP00043J pmid: 31478048 |
|
(e) Gillard, R. M.; Brimble, M. A. Org. Biomol. Chem. 2019, 17, 8272.
doi: 10.1039/c9ob01598a pmid: 31478048 |
|
[4] |
Liu, W.-Z.; Ma, L.-Y.; Liu, D.-S.; Huang, Y.-L.; Wang, C.-H.; Shi, S.-S.; Pan, X.-H.; Song, X.-D.; Zhu, R.-X. Org. Lett. 2014, 16, 90.
doi: 10.1021/ol403076s |
[5] |
Fujimoto, H.; Nozawa, M.; Okuyama, E.; Ishibashi, M. Chem. Pharm. Bull. 2002, 50, 330.
doi: 10.1248/cpb.50.330 |
[6] |
Li, J.; Li, L.; Si, Y.; Jiang, X.; Guo, L.; Che, Y. Org. Lett. 2011, 13, 2670.
doi: 10.1021/ol200770k pmid: 21495643 |
[7] |
Stierle, A. A.; Stierle, D. B.; Kelly, K. J. Org. Chem. 2006, 71, 5357;
doi: 10.1021/jo060018d |
[8] |
Zhuravleva, O. I.; Sobolevskaya, M. P.; Afiyatullov, S. S.; Kirichuk, N. N.; Denisenko, V. A.; Dmitrenok, P. S.; Yurchenko, E. A.; Dyshlovoy, S. A. Mar. Drugs 2014, 12, 5930.
doi: 10.3390/md12125930 pmid: 25501795 |
[9] |
Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S. Chem. Lett. 2000, 29, 308.
doi: 10.1246/cl.2000.308 |
[10] |
(a) Twiner, M. J.; Doucette, G. J.; Pang, Y.; Fang, C.; Forsyth, C. J.; Miles, C. O. Mar. Drugs 2016, 14, 207.
doi: 10.3390/md14110207 |
(b) Fu, L.-L.; Zhao, X.-Y.; Ji, L.-D.; Xu, J. Toxicon 2019, 160, 1.
doi: 10.1016/j.toxicon.2018.12.007 |
|
[11] |
Reddy, C. R.; Srikanth, B.; Dilipkumar, U.; Rao, K. M. V.; Jagadeesh, B. Eur. J. Org. Chem. 2013, 525.
|
[12] |
Trost, B. M.; Weiss, A. H. Angew. Chem., Int. Ed. 2007, 46, 7664.
doi: 10.1002/anie.200702637 |
[13] |
Uckun, F. M.; Mao, C.; Vassilev, A. O.; Huang, H.; Jan, S.-T. Bioorg. Med. Chem. Lett. 2000, 10, 541.
pmid: 10741549 |
[14] |
Scheepstra, M.; Andrei, S. A.; Unver, M. Y.; Hirsch, A. K. H.; Leysen, S.; Ottmann, C.; Brunsveld, L.; Milroy, L.-G. Angew. Chem., Int. Ed. 2017, 56, 5480.
doi: 10.1002/anie.201612504 |
[15] |
(a) Wang, X.; Ding, K. Chin. J. Chem. 2018, 36, 899.
doi: 10.1002/cjoc.201800247 |
(b) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Acc. Chem. Res. 2021, 54, 668.
doi: 10.1021/acs.accounts.0c00697 |
|
(c) Li, J.; Chen, G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Chem. Sci. 2011, 2, 1141.
doi: 10.1039/c0sc00607f |
|
[16] |
(a) Argüelles, A. J.; Sun, S.; Budaitis, B. G.; Nagorny, P. Angew. Chem., Int. Ed. 2018, 57, 5325.
doi: 10.1002/anie.201713304 pmid: 30207727 |
(b) Huang, J.; Hong, M.; Wang, C.-C.; Kramer, S.; Lin, G.-Q.; Sun, X.-W. J. Org. Chem. 2018, 83, 12838.
doi: 10.1021/acs.joc.8b01693 pmid: 30207727 |
|
[17] |
(a) Rizzacasa, M. A.; Pollex, A. Org. Biomol. Chem. 2009, 7, 1053.
doi: 10.1039/b819966n pmid: 19262920 |
(b) Raju, B. R.; Saikia, A. K. Molecules 2008, 13, 1942.
doi: 10.3390/molecules13081942 pmid: 19262920 |
|
(c) Sperry, J.; Liu, Y.-C.; Brimble, M. A. Org. Biomol. Chem. 2010, 8, 29.
pmid: 19262920 |
|
(d) Palmes, J. A.; Aponick, A. Synthesis 2012, 44, 3699.
doi: 10.1055/s-0032-1317489 pmid: 19262920 |
|
(e) Quach, R.; Chorley, D. F.; Brimble, M. A. Org. Biomol. Chem. 2014, 12, 7423.
doi: 10.1039/C4OB01325E pmid: 19262920 |
|
(f) Quach, R.; Furkert, D. P.; Brimble, M. A. Org. Biomol. Chem. 2017, 15, 3098.
doi: 10.1039/C7OB00496F pmid: 19262920 |
|
[18] |
Čorić, I.; List, B. Nature 2012, 483, 315.
doi: 10.1038/nature10932 |
[19] |
(a) Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. J. Am. Chem. Soc. 2012, 134, 8074.
doi: 10.1021/ja302704m pmid: 26641317 |
(b) Khomutnyk, Y. Y.; Argüelles, A. J.; Winschel, G. A.; Sun, Z.; Zimmerman, P. M.; Nagorny, P. J. Am. Chem. Soc. 2016, 138, 444.
doi: 10.1021/jacs.5b12528 pmid: 26641317 |
|
[20] |
Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 936;
doi: 10.1002/anie.201106488 |
[21] |
Wang, X.; Guo, P.; Wang, X.; Wang, Z.; Ding, K. Adv. Synth. Catal. 2013, 355, 2900.
doi: 10.1002/adsc.201300380 |
[22] |
Liu, N.; Zhu, W.; Yao, J.; Yin, L.; Lu, T.; Dou, X. ACS Catal. 2020, 10, 2596.
doi: 10.1021/acscatal.9b05577 |
[23] |
Han, X.; Floreancig, P. E. Angew. Chem., Int. Ed. 2014, 53, 11075.
doi: 10.1002/anie.201406819 |
[24] |
Rexit, A. A.; Mailikezati, M. Tetrahedron Lett. 2015, 56, 2651.
doi: 10.1016/j.tetlet.2015.03.007 |
[25] |
Yoneda, N.; Fukata, Y.; Asano, K.; Matsubara, S. Angew. Chem., Int. Ed. 2015, 54, 15497.
doi: 10.1002/anie.201508405 |
[26] |
Xue, J.; Zhang, H.; Tian, T.; Yin, K.; Liu, D.; Jiang, X.; Li, Y.; Jin, X.; Yao, X. Adv. Synth. Catal. 2016, 358, 370.
doi: 10.1002/adsc.201500390 |
[27] |
Hamilton, J. Y.; Rössler, S. L.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 8082.
doi: 10.1021/jacs.7b02856 pmid: 28598614 |
[28] |
Rössler, S. L.; Schreib, B. S.; Ginterseder, M.; Hamilton, J. Y.; Carreira, E. M. Org. Lett. 2017, 19, 5533.
doi: 10.1021/acs.orglett.7b02620 pmid: 28968123 |
[29] |
Midya, A.; Maity, S.; Ghorai, P. Chem. Eur. J. 2017, 23, 11216.
doi: 10.1002/chem.201701291 |
[30] |
Roy, T. K.; Gorad, S. S.; Ghorai, P. Org. Lett. 2022, 24, 1889.
doi: 10.1021/acs.orglett.2c00074 |
[31] |
Reddy, R. R.; Panda, S.; Ghorai, P. J. Org. Chem. 2019, 84, 5357.
doi: 10.1021/acs.joc.9b00371 |
[32] |
Zheng, T.; Wang, X.; Ng, W.-H.; Tse, Y.-L. S.; Yeung, Y.-Y. Nat. Catal. 2020, 3, 993.
doi: 10.1038/s41929-020-00530-9 |
[33] |
Xu, S.; Huang, A.; Yang, Y.; Wang, Y.; Zhang, M.; Sun, Z.; Zhao, M.; Wei, Y.; Li, G.; Hong, L. Org. Lett. 2022, 24, 2978.
doi: 10.1021/acs.orglett.2c00845 |
[34] |
Hilby, K. M.; Denmark, S. E. J. Org. Chem. 2021, 86, 14250.
doi: 10.1021/acs.joc.1c02271 |
[35] |
Audrain, H.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K.-A. J. Org. Chem. 2000, 65, 4487.
pmid: 10959849 |
[36] |
Yu, S.; Gao, L.; Yan, Y.; Yin, Z.; Shang, Y. Chin. J. Org. Chem. 2021, 41, 582. (in Chinese)
doi: 10.6023/cjoc202006050 |
( 余述燕, 高丽宏, 闫溢哲, 尹志刚, 商永嘉, 有机化学 2021, 41, 582.)
doi: 10.6023/cjoc202006050 |
|
[37] |
Wu, H.; He, Y.-P.; Gong, L.-Z. Org. Lett. 2013, 15, 460.
doi: 10.1021/ol303188u |
[38] |
Cala, L.; Mendoza, A.; Fañanás, F. J.; Rodríguez, F. Chem. Commun. 2013, 49, 2715.
doi: 10.1039/c3cc00118k |
[39] |
(a) Wang, X.; Dong, S.; Yao, Z.; Feng, L.; Daka, P.; Wang, H.; Xu, Z. Org. Lett. 2014, 16, 22.
doi: 10.1021/ol4033286 pmid: 28474897 |
(b) Liang, M.; Zhang, S.; Jia, J.; Tung, C.-H.; Wang, J.; Xu, Z. Org. Lett. 2017, 19, 2526.
doi: 10.1021/acs.orglett.7b00804 pmid: 28474897 |
|
(c) Teng, Q.; Qi, J.; Zhou, L.; Xu, Z.; Tung, C.-H. Org. Chem. Front. 2018, 5, 990.
doi: 10.1039/C7QO01005B pmid: 28474897 |
|
(d) Mao, W.; Lin, S.; Zhang, L.; Lu, H.; Jia, J.; Xu, Z. Org. Chem. Front. 2020, 7, 856.
doi: 10.1039/D0QO00022A pmid: 28474897 |
|
[40] |
Li, J.; Lin, L.; Hu, B.; Lian, X.; Wang, G.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 6075.
doi: 10.1002/anie.201601701 |
[41] |
Gong, J.; Wan, Q.; Kang, Q. Adv. Synth. Catal. 2018, 360, 4031.
doi: 10.1002/adsc.201800492 |
[42] |
(a) Yang, W.-L.; Shang, X.-Y.; Luo, X.; Deng, W.-P. Angew. Chem., Int. Ed. 2022, 61, e202203661.
|
(b) Yuen, D.-Y.; Yang, S.-H.; Brimble, M. A. Angew. Chem., nt. Ed. 2011, 50, 8350.
|
|
[43] |
Yang, W.-L.; Wang, Y.-L.; Li, W.; Gu, B.-M.; Wang, S.-W.; Luo, X.; Tian, B.-X.; Deng, W.-P. ACS Catal. 2021, 11, 12557.
doi: 10.1021/acscatal.1c03711 |
[44] |
Chen, J.-R.; Hu, X.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 4038.
doi: 10.1002/anie.201400018 |
[45] |
(a) Wang, D.; Liu, S.; Lan, X.-C.; Paniagua, A.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Adv. Synth. Catal. 2017, 359, 3186.
doi: 10.1002/adsc.201700543 |
(b) Liu, S.; Chen, K.; Lan, X.-C.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Chem. Commun. 2017, 53, 10692.
doi: 10.1039/C7CC05563C |
|
(c) Liu, S.; Lan, X.-C.; Chen, K.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 3831.
doi: 10.1021/acs.orglett.7b01705 |
|
(d) Qiu, J.-K.; Hao, W.-J.; Li, G.; Jiang, B. Adv. Synth. Catal. 2018, 360, 1182.
doi: 10.1002/adsc.201701149 |
|
(e) Ji, C.-L.; Pan, Y.; Geng, F.-Z.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2019, 6, 474.
doi: 10.1039/C8QO01277F |
|
[46] |
Ge, S.; Cao, W.; Kang, T.; Hu, B.; Zhang, H.; Su, Z.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2019, 58, 4017.
doi: 10.1002/anie.201812842 |
[47] |
Dong, K.; Gurung, R.; Xu, X.; Doyle, M. P. Org. Lett. 2021, 23, 3955.
doi: 10.1021/acs.orglett.1c01113 |
[1] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[2] | 陈宛婷, 钟雄威, 邢佳乐, 吴昌书, 高杨. C—N轴手性化合物的不对称催化合成研究进展[J]. 有机化学, 2024, 44(2): 349-377. |
[3] | 姜权彬. 经由氮杂邻联烯醌中间体合成轴手性化合物的研究进展[J]. 有机化学, 2024, 44(1): 159-172. |
[4] | 张俊杰, 徐学涛. (S)-(–)-Xylopinine和(S)-(+)-Laudanosine的不对称合成[J]. 有机化学, 2023, 43(9): 3297-3303. |
[5] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[6] | 罗诚, 尹艳丽, 江智勇. P-手性膦氧化物的不对称合成研究进展[J]. 有机化学, 2023, 43(6): 1963-1976. |
[7] | 王海清, 杨爽, 张宇辰, 石枫. 邻羟基苄醇参与的催化不对称反应研究进展[J]. 有机化学, 2023, 43(3): 974-999. |
[8] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[9] | 方思强, 刘赞娇, 王天利. Atherton-Todd反应的研究进展[J]. 有机化学, 2023, 43(3): 1069-1083. |
[10] | 曾燕, 叶飞. 不对称催化构建硅立体中心化合物的新反应体系研究进展[J]. 有机化学, 2023, 43(10): 3388-3413. |
[11] | 赵佳怡, 葛怡聪, 何川. 不对称催化Si—H/X—H脱氢偶联构筑硅中心手性[J]. 有机化学, 2023, 43(10): 3352-3366. |
[12] | 代增进, 张绪穆, 殷勤. 铵盐为胺源的不对称还原胺化反应研究进展[J]. 有机化学, 2022, 42(8): 2261-2274. |
[13] | 朱雪莉, 杨绍丽, 郏彩霞, 李静, 段征. 通过邻羟基苯基膦和醛的缩合反应合成苯并氧杂磷杂环戊烯[J]. 有机化学, 2022, 42(7): 2201-2213. |
[14] | 李晖, 殷亮. 铜催化的直接型插烯反应研究进展[J]. 有机化学, 2022, 42(6): 1573-1585. |
[15] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||