有机化学 ›› 2023, Vol. 43 ›› Issue (3): 1187-1196.DOI: 10.6023/cjoc202206052 上一篇 下一篇
所属专题: 中国女科学家专辑
研究论文
收稿日期:
2022-06-28
修回日期:
2022-08-25
发布日期:
2022-09-15
通讯作者:
皮超, 崔秀灵
基金资助:
Zhen Tang, Chao Pi(), Yangjie Wu, Xiuling Cui()
Received:
2022-06-28
Revised:
2022-08-25
Published:
2022-09-15
Contact:
Chao Pi, Xiuling Cui
Supported by:
文章分享
报道了铑(III)催化2-芳基-2H-吲唑与硫叶立德的C—H键活化/环化反应, 有效地合成了6-芳基吲唑并[2,3-a]喹啉及其衍生物. 该反应效率高, 官能团兼容性好, 避免了外置氧化剂, 并且副产物仅为二甲基亚砜(DMSO)和水. 此外放大反应证明了该方式在工业上应用的可行性.
汤振, 皮超, 吴养洁, 崔秀灵. 铑催化2-芳基-2H-吲唑与硫叶立德的酰甲基化/串联环化反应高效构建6-芳基吲唑并[2,3-a]喹啉类衍生物[J]. 有机化学, 2023, 43(3): 1187-1196.
Zhen Tang, Chao Pi, Yangjie Wu, Xiuling Cui. Rhodium-Catalyzed Tandem Acylmethylation/Annulation Reactions of 2-Aryl-2H-indazoles with Sulfoxonium Ylides: Easy Access to 6-Arylindazolo[2,3-a]quinolines[J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1187-1196.
Entry | Variation from standard conditions | Yieldb/% |
---|---|---|
1 | None | 83 |
2 | Without [Cp*RhCl2]2 | NR |
3 | Without AgOTf | NR |
4 | Cp*Co(CO)I2 instead of [Cp*RhCl2]2 | NR |
5 | [Cp*IrCl2]2 instead of [Cp*RhCl2]2 | NR |
6 | [RuCl2(p-cymene)]2 instead of [Cp*RhCl2]2 | NR |
7 | Pd(OAc)2 instead of [Cp*RhCl2]2 | NR |
8 | AgSbF6, AgNTf2, PhCOOAg, Ag2CO3, CF3COOAg, AgBF4 instead of AgOTf | 64/68/56/46/64/70 |
9 | DCE, DCM, CH3CN, THF, DMF, MeOH, HFIP, toluene instead of TFE | 52/48/43/NR/NR/63/45/60 |
10 | PivOH, HOAc, 1-AdCOOH, TsOH instead of PhCOOH | 52/63/58/54 |
11 | TFA (1 equiv.) | 64 |
12 | 80 ℃ instead of 120 ℃ | 42 |
Entry | Variation from standard conditions | Yieldb/% |
---|---|---|
1 | None | 83 |
2 | Without [Cp*RhCl2]2 | NR |
3 | Without AgOTf | NR |
4 | Cp*Co(CO)I2 instead of [Cp*RhCl2]2 | NR |
5 | [Cp*IrCl2]2 instead of [Cp*RhCl2]2 | NR |
6 | [RuCl2(p-cymene)]2 instead of [Cp*RhCl2]2 | NR |
7 | Pd(OAc)2 instead of [Cp*RhCl2]2 | NR |
8 | AgSbF6, AgNTf2, PhCOOAg, Ag2CO3, CF3COOAg, AgBF4 instead of AgOTf | 64/68/56/46/64/70 |
9 | DCE, DCM, CH3CN, THF, DMF, MeOH, HFIP, toluene instead of TFE | 52/48/43/NR/NR/63/45/60 |
10 | PivOH, HOAc, 1-AdCOOH, TsOH instead of PhCOOH | 52/63/58/54 |
11 | TFA (1 equiv.) | 64 |
12 | 80 ℃ instead of 120 ℃ | 42 |
[1] |
(a) Facchetti, A. Chem. Mater. 2011, 23, 733.
doi: 10.1021/cm102419z |
(b) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.
doi: 10.1021/cr100380z |
|
(c) Gsänger, M.; Bialas, D.; Huang, L.; Stolte, M.; Würthner, F. Adv. Mater. 2016, 28, 3615.
doi: 10.1002/adma.v28.19 |
|
(d) Konidena, R. K.; Thomas, K. R. J.; Dubey, D. K.; Sahoo, S.; Jou, J. H. Chem. Commun. 2017, 53, 11802.
doi: 10.1039/C7CC07139F |
|
(e) Ansari, A. J.; Joshi, G.; Sharma, P.; Maurya, A. K.; Metre, R. K.; Agnihotri, V. K.; Chandaluri, C. G.; Kumar, R.; Singh, S.; Sawant, D. M. J. Org. Chem. 2019, 84, 3817.
doi: 10.1021/acs.joc.8b02845 |
|
[2] |
(a) Cheng, Y.; Li, G.; Liu, Y.; Shi, Y.; Gao, G.; Wu, D.; Lan, J.; You, J. J. Am. Chem. Soc. 2016, 138, 4730.
doi: 10.1021/jacs.5b09241 |
(b) Phillips, S. D.; Castle, R. N. J. Heterocycl. Chem. 1980, 17, 1489.
doi: 10.1002/jhet.v17:7 |
|
(c) Sharples, D.; Hajós, G.; Riedl, Z.; Csányi, D.; Molnár, J.; Szabó, D. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 269.
doi: 10.1002/1521-4184(200109)334:8/9【-逻*辑*与-】amp;lt;【-逻*辑*与-】amp;gt;1.0.CO;2-H |
|
[3] |
(a) Allard, S.; Forster, M.; Souharce, B.; Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070.
doi: 10.1002/(ISSN)1521-3773 |
(b) Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
doi: 10.1002/adma.v29.22 |
|
(c) Stoessel, P.; Joosten, D.; Gerhard, A.WO 2012007086, 2012.
|
|
(d) Stoessel, P.; Heil, H.; Joosten, D.WO 2010086089, 2010.
|
|
[4] |
(a) Shindoh, N.; Tokuyama, H.; Takemoto, Y.; Takasu, K. J. Org. Chem. 2008, 73, 7451.
doi: 10.1021/jo8009243 pmid: 18759484 |
(b) Zhao, J.; Wu, C.; Li, P.; Ai, W.; Chen, H.; Wang, C.; Larock, R. C.; Shi, F. J. Org. Chem. 2001, 76, 6837.
doi: 10.1021/jo200863e pmid: 18759484 |
|
(c) Zhao, J.; Li, P.; Wu, C.; Chen, H.; Ai, W., Sun, R.; Ren, H.; Larock, R. C.; Shi, F. Org. Biomol. Chem. 2012, 10, 1922.
doi: 10.1039/c2ob06611d pmid: 18759484 |
|
(d) Li, L.; Wang, H.; Yang, X.; Kong, L.; Wang, F.; Li, X. J. Org. Chem. 2016, 81, 12038.
doi: 10.1021/acs.joc.6b02356 pmid: 18759484 |
|
(e) Zhu, C.; Feng, C.; Yamane, M. Chem. Commun. 2017, 53, 2606.
doi: 10.1039/C7CC00562H pmid: 18759484 |
|
(f) Kumar, S.V.; Ellairaja, S.; Satheesh, S.; Vasantha, V. S.; Punniyamurthy, T. Org. Chem. Front. 2018, 5, 2630.
doi: 10.1039/C8QO00557E pmid: 18759484 |
|
(g) Guo, S.; Sun, L.; Li, X.; Zhang, X.; Fan, X. Adv. Synth. Catal. 2020, 362, 913.
doi: 10.1002/adsc.v362.4 pmid: 18759484 |
|
[5] |
(a) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585.
doi: 10.1021/ja104305s pmid: 20578748 |
(b) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
doi: 10.1021/ar3002798 pmid: 20578748 |
|
(c) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
doi: 10.1039/c2cs15281a pmid: 20578748 |
|
(d) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Chem. Rev. 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 pmid: 20578748 |
|
(e) Liu, W. P.; Ackermann, L. ACS Catal. 2016, 6, 3743.
doi: 10.1021/acscatal.6b00993 pmid: 20578748 |
|
[6] |
(a) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Potot- schnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
doi: 10.1039/c8cs00201k pmid: 30033454 |
(b) Wu, Y.; Pi, C.; Wu, Y.; Cui, X. Chem. Soc. Rev. 2021, 50, 3677.
doi: 10.1039/D0CS00966K pmid: 30033454 |
|
[7] |
(a) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2004, 126, 2706.
doi: 10.1021/ja0393170 pmid: 29048909 |
(b) Zhang, C.; Rao, Y. Org. Lett. 2015, 17, 4456.
doi: 10.1021/acs.orglett.5b02115 pmid: 29048909 |
|
(c) Zhang, B.; Wang, H.W.; Kang, Y. S.; Zhang, P.; Xu, H.J.; Lu, Y.; Sun, W.Y. Org. Lett. 2017, 19, 5940.
doi: 10.1021/acs.orglett.7b02931 pmid: 29048909 |
|
(d) Xu, F.; Li, Y. J.; Huang, C.; Xu, H. C. ACS Catal. 2018, 8, 3820.
doi: 10.1021/acscatal.8b00373 pmid: 29048909 |
|
(e) Zhu, S.; Shi, K.; Zhu, H.; Jia, Z. K.; Xia, X. F.; Wang, D.; Zou, L. H. Org. Lett. 2020, 22, 1504.
doi: 10.1021/acs.orglett.0c00085 pmid: 29048909 |
|
[8] |
Wu, Y.; Pi, C.; Wu, Y.; Cui, X. Org. Lett. 2020, 22, 361.
doi: 10.1021/acs.orglett.9b03768 |
[9] |
Hu, W.; Pi, C.; Wu, Y.; Cui, X. Org. Lett. 2020, 22, 2613.
|
[10] |
(a) Li, A. H.; Dai, L. X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341.
doi: 10.1021/cr960411r |
(b) Lu, L. Q.; Li, T. R.; Wang, Q.; Xiao, W. J. Chem. Soc. Rev. 2017, 46, 4135.
doi: 10.1039/C6CS00276E |
|
(c) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulideet, N. Chem. Rev. 2019, 119, 8701.
doi: 10.1021/acs.chemrev.9b00111 |
|
(d) Barday, M.; Janot, C.; Halcovitch, N.R.; Muir, J.; Aïssa, C. Angew. Chem., Int. Ed. 2017, 56, 13117.
doi: 10.1002/anie.201706804 |
|
[11] |
(a) Talero, A. G.; Martins, B. S.; Burtoloso, A. C. B. Org. Lett. 2018, 20, 7206.
doi: 10.1021/acs.orglett.8b03126 pmid: 30958678 |
(b) Ji, S.; Yan, K.; Li, B.; Wang, B. Org. Lett. 2018, 20, 5981.
doi: 10.1021/acs.orglett.8b02796 pmid: 30958678 |
|
(c) You, C.; Pi, C.; Wu, Y.; Cui, X. Adv. Synth. Catal. 2018, 360, 4068.
doi: 10.1002/adsc.v360.21 pmid: 30958678 |
|
(d) Chen, G.; Zhang, X.; Jia, R.; Li, B.; Fan, X. Adv. Synth. Catal. 2018, 360, 3781.
doi: 10.1002/adsc.v360.19 pmid: 30958678 |
|
(e) Wu, X.; Xiao, Y.; Sun, S.; Yu, J. T.; Cheng, J. Org. Lett. 2019, 21, 6653.
doi: 10.1021/acs.orglett.9b02249 pmid: 30958678 |
|
(f) Chen, X.; Wang, M.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 2541.
doi: 10.1021/acs.orglett.9b00340 pmid: 30958678 |
|
[12] |
(a) Shen, Z.; Pi, C.; Wu, Y.; Cui, X. Chin. Chem. Lett. 2019, 30, 1374.
doi: 10.1016/j.cclet.2019.01.033 |
(b) He, Y.; Pi, C.; Wu, Y.; Cui, X. Chin. Chem. Lett. 2020, 31, 396.
doi: 10.1016/j.cclet.2019.09.025 |
|
(c) Li, T.; Yang, Z.; Song, Z.; Chauvin, R.; Cui, X. Org. Lett. 2020, 22, 4078.
doi: 10.1021/acs.orglett.0c01139 |
|
(d) Ren, J.; Pi, C.; Wu, Y.; Cui, X. Org. Lett. 2021, 23, 6628.
doi: 10.1021/acs.orglett.1c02077 |
|
(e) Ren, J.; Pi, C.; Wu, Y.; Cui, X. Green Chem. 2022, 24, 3017.
doi: 10.1039/D1GC04825B |
|
[13] |
(a) Genung, N. E.; Wei, L.; Aspnes, G. E. Org. Lett. 2014, 16, 3114.
doi: 10.1021/ol5012423 |
(b) Kumar, M. R.; Park, A.; Park, N.; Lee, S. Org. Lett. 2011, 13, 3542.
doi: 10.1021/ol201409j |
|
[14] |
Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aïssa, C. Angew. Chem., Int. Ed. 2017, 56, 13117.
doi: 10.1002/anie.201706804 |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 高宝昌, 石雨, 田媛, 张治国, 张婧如, 孙宇峰, 毛国梁, 戴凌燕. 4-甲基-2-氧代-6-芳氨基-二氢-吡喃-3-腈衍生物的合成[J]. 有机化学, 2024, 44(2): 644-649. |
[3] | 李梦竹, 孟博莹, 兰文捷, 傅滨. 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024, 44(1): 195-203. |
[4] | 文思, 丁宇浩, 田青于, 葛进, 程国林. 铑(III)催化苯甲亚胺酸乙酯和CF3-亚胺氧锍叶立德C—H 活化/环化反应合成CF3-1H-苯并[de][1,8]萘吡啶[J]. 有机化学, 2024, 44(1): 291-300. |
[5] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[6] | 唐菁, 罗文坤, 周俊. 氮杂螺[4.5]三烯酮衍生物的合成研究进展[J]. 有机化学, 2023, 43(9): 3006-3034. |
[7] | 贝文峰, 潘健, 冉冬梅, 刘伊琳, 杨震, 冯若昆. 基于钴催化吲哚酰胺与二炔和单炔的[4+2]环化反应合成γ-咔啉酮[J]. 有机化学, 2023, 43(9): 3226-3238. |
[8] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[9] | 张素珍, 张文文, 杨慧, 顾庆, 游书力. 铑催化2-烯基苯酚与炔烃的对映体选择性螺环化反应[J]. 有机化学, 2023, 43(8): 2926-2933. |
[10] | 张彦波, 孙萌. 铑催化碳酸亚乙烯酯与吲哚啉C(7)位C—H甲酰甲基化反应[J]. 有机化学, 2023, 43(8): 2905-2912. |
[11] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[12] | 孙李星, 孙婷婷, 王海清, 吴淑芳, 王小烨, 刘天雅, 张宇辰. Lewis酸催化下3-烷基-2-吲哚烯与α,β-不饱和N-磺酰基亚胺的[2+4]环化反应[J]. 有机化学, 2023, 43(6): 2178-2188. |
[13] | 任志军, 罗维纬, 周俊. 银介导的N-芳基丙烯酰胺串联环化反应研究进展[J]. 有机化学, 2023, 43(6): 2026-2039. |
[14] | 蔡荣斌, 李冰, 周琪, 朱隆懿, 罗军. 4,8,9,10-四官能化的2-氮杂金刚烷及其2-氮杂原金刚烷骨架异构体的合成[J]. 有机化学, 2023, 43(6): 2217-2225. |
[15] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||