有机化学 ›› 2023, Vol. 43 ›› Issue (4): 1310-1324.DOI: 10.6023/cjoc202211012 上一篇 下一篇
综述与进展
童宇星a,b,c, 王子维a,b,c, 刘奔a,b,c, 徐耀威a,b,c, 高颂a,b,c, 唐向兵a,b,c,*(), 张兴华d,*()
收稿日期:
2022-11-10
修回日期:
2022-11-30
发布日期:
2022-12-07
通讯作者:
唐向兵, 张兴华
基金资助:
Yuxing Tonga,b,c, Ziwei Wanga,b,c, Ben Liua,b,c, Yaowei Xua,b,c, Song Gaoa,b,c, Xiangbing Tanga,b,c(), Xinghua Zhangd()
Received:
2022-11-10
Revised:
2022-11-30
Published:
2022-12-07
Contact:
Xiangbing Tang, Xinghua Zhang
Supported by:
文章分享
吲哚-3-硫醚类化合物是一类重要的的生物活性分子, 在医药以及农用化学品等领域具有广泛应用. 如何通过简单、高效的方法构建此类结构单元, 尤其是实现吲哚C-3原子上C—S键的选择性合成, 已成为近年来高生物活性分子设计开发的重要手段. 总结了通过吲哚3位C—H键直接选择性硫醚化制备吲哚-3-硫醚类化合物的方法, 根据硫元素的不同来源对此类反应的研究进展进行综述.
童宇星, 王子维, 刘奔, 徐耀威, 高颂, 唐向兵, 张兴华. 吲哚-3-硫醚类化合物的合成研究进展[J]. 有机化学, 2023, 43(4): 1310-1324.
Yuxing Tong, Ziwei Wang, Ben Liu, Yaowei Xu, Song Gao, Xiangbing Tang, Xinghua Zhang. Recent Advances in Synthesis of 3-Sulfenylated Indoles[J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1310-1324.
[1] |
(a) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Rooney, C. S.; Balani, S. K.; Condra, J. H.; Emin, E. A.; Goldman, M. E.; Greenlee, W. J.; Kauffman, L. R.; O'Brien, J. A.; Sardana, V. V.; Schleif, W. A.; Theoharides, A. D.; Anderson, P. S. J. Med. Chem. 1993, 36, 1291.
pmid: 2470904 |
(b) Martino, G. D.; Regina, G. L.; Coluccia, A.; Edler, M. C.; Barbera, M. C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2004, 47, 6120.
doi: 10.1021/jm049360d pmid: 2470904 |
|
(c) Funk, C. D. Nat. Rev. Drug Discovery 2005, 4, 664.
doi: 10.1038/nrd1796 pmid: 2470904 |
|
(d) Unangst, P. C.; Connor, D. T.; Stabler, S. R.; Weikert, R. J.; Carethers, M. E.; Kennedy J. A. Thueson, D. O.; Chestnut, J. C.; Adolphson, R. L.; Conroy, M. C. J. Med. Chem. 1989, 32, 1360.
pmid: 2470904 |
|
(d) Regina, G. L.; Bai, R.; Rensen, W. M.; Coluccia, A.; Piscitelli, F.; Gatti, V.; Bolognesi, A.; Lavecchia, A.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M. L.; Mariani, M.; Santoni, A.; Brancale, A.; Ferlini, C.; Dondio, G.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. J. Med. Chem. 2011, 54, 8394.
doi: 10.1021/jm2012886 pmid: 2470904 |
|
[2] |
Khandekar, S. S.; Gentry, D. R.; Aller, G, V.; Warren, P.; Xiang, H.; Silverman, C.; Doyle, M. L.; Chambers, P. A.; Konstantinidis, A. K.; Brandt, M.; Daines, R. A.; Lonsdale, J. T. J. Biol. Chem. 2001, 276, 30024.
doi: 10.1074/jbc.M101769200 pmid: 11375394 |
[3] |
Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. J. Org. Chem. 2004, 69, 7688.
doi: 10.1021/jo048758e |
[4] |
Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J.; Praneeth, K. Synthesis 2009, 1520.
|
[5] |
Schlosser K. M. Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. Org. Lett. 2004, 6, 819.
pmid: 14986983 |
[6] |
Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034.
doi: 10.1016/j.tetlet.2007.07.130 |
[7] |
Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahedron 2015, 71, 8885.
doi: 10.1016/j.tet.2015.09.070 |
[8] |
Yi, S.; Li, M.; Mo, W.; Hu, X.; Hu, B.; Sun, N.; Jin, L.; Shen, Z. Tetrahedron Lett. 2016, 57, 1912.
doi: 10.1016/j.tetlet.2016.03.073 |
[9] |
Liu, X.; Cui, H.; Yang, D.; Dai, S.; Zhang, G.; Wei, W.; Wang, H. Catal. Lett. 2016, 146, 1743.
doi: 10.1007/s10562-016-1798-2 |
[10] |
Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984.
doi: 10.1039/C8GC00117K |
[11] |
Choudhury, P.; Roy, B.; Basu, B. Asian J. Org. Chem. 2017, 6, 1569.
doi: 10.1002/ajoc.v6.11 |
[12] |
Chen, M.; Luo, Y.; Zhang, C.; Guo, L.; Wang, Q.; Wu, Y. Org. Chem. Front. 2019, 6, 116.
doi: 10.1039/c8qo00726h |
[13] |
Benchawan, T.; Saeeng, R. Eur. J. Org. Chem. 2022, e202200752
|
[14] |
Liu, Y.; Zhang, Y.; Hu, C.; Wan, J.-P.; Wen, C. RSC Adv. 2014, 4, 35528.
doi: 10.1039/C4RA05206D |
[15] |
Truong, T. S.; Retailleau, P.; Nguyen, T. B. Asian J. Org. Chem. 2022, 11, e202100751.
|
[16] |
Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 1.
|
[17] |
Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen D.; Fan,, X.-L. RSC Adv. 2017, 7, 37739.
doi: 10.1039/C7RA08086G |
[18] |
Hazarika, S.; Barman, P. ChemistrySelect 2020, 5, 11583.
doi: 10.1002/slct.v5.37 |
[19] |
Yuan, W.; Huang, J.; Xu, X.; Wang, L.; Tang, X.-Y. Org. Lett. 2021, 23, 7139.
doi: 10.1021/acs.orglett.1c02553 |
[20] |
Huang, Q.; Peng, X.; Li, H.; He, H.; Liu, L. Molecules 2022, 27, 772.
doi: 10.3390/molecules27030772 |
[21] |
Saima; Equbal, D.; Lavekara, A. G.; Sinha, A. K. Org. Biomol. Chem. 2016, 14, 6111.
doi: 10.1039/c6ob00930a pmid: 27251465 |
[22] |
Atkinson, J. G.; Hamel, P.; Girard, Y. Synthesis 1988, 480.
|
[23] |
Regina, G. L.; Gatti, V.; Famiglini, V.; Piscitelli, F.; Silvestri, R. ACS Comb. Sci. 2012, 14, 258.
doi: 10.1021/co200165j |
[24] |
Sang, P.; Chen, Z.; Zou, J.; Zhang, Y. Green Chem. 2013, 15, 2096.
doi: 10.1039/c3gc40724a |
[25] |
Zhou, X.; Li, X. RSC Adv. 2014, 4, 1241.
doi: 10.1039/C3RA46361C |
[26] |
Yu, Y.; Zhou, Y.; Song, Z.; Liang, G. Org. Biomol. Chem. 2018, 16, 4958.
doi: 10.1039/C8OB00948A |
[27] |
Fang, X.-L.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Synthesis 2009, 24, 4183.
|
[28] |
Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125.
doi: 10.1021/jo5000779 |
[29] |
Huang, D.; Chen, J.; Dan, W.; Ding, J.; Liu, M.; Wu, H. Adv. Synth. Catal. 2012, 13, 2123.
|
[30] |
Prasad, C. D.; Kumar, S.; Sattar, M.; Adhikary, A.; Kumar, S. Org. Biomol. Chem. 2013, 11, 8036.
doi: 10.1039/c3ob41601a pmid: 24166084 |
[31] |
Ye, L.-M.; Chen, J.; Mao, P.; Zhang, X.-J.; Yan, M. Tetrahedron Lett. 2017, 58, 2743.
|
[32] |
Chen, C.; Niu, P.; Shen, Z.; Li, M. J. Electrochem. Soc. 2018, 165, G67.
|
[33] |
Qin, J.; Zuo, H.; Ni, Y.; Yu, Q.; Zhong, F. ACS Sustainable Chem. Eng. 2020, 8, 12342.
doi: 10.1021/acssuschemeng.0c03942 |
[34] |
Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014, 356, 364.
doi: 10.1002/adsc.201300773 |
[35] |
Rahaman, R.; Barman, P. Eur. J. Org. Chem. 2017, 6327.
|
[36] |
Katrun, P.; Hongthong, S.; Hlekhlai, S.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Jaipetchb, T.; Kuhakarn, C. RSC Adv. 2014, 4, 18933.
doi: 10.1039/c4ra02607a |
[37] |
Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S. RSC Adv. 2014, 4, 49165.
doi: 10.1039/C4RA08669D |
[38] |
Ge, X.; Sun, F.; Liu, X.; Chen, X.; Qian, C.; Zhou, S. New J. Chem. 2017, 41, 13175.
doi: 10.1039/C7NJ02784B |
[39] |
Wang, F.; Lu, G.-P.; Lin, Y. Tetrahedron Lett. 2021, 70, 153015.
doi: 10.1016/j.tetlet.2021.153015 |
[40] |
Liang, J.; Wang, G.; Dong, L.; Pang, X.; Qin, J.; Xu, X.; Shao, X.; Li, Z. Org. Lett. 2021, 23, 5545.
doi: 10.1021/acs.orglett.1c01882 |
[41] |
Liu, C.-R.; Ding, L.-H. Org. Biomol. Chem. 2015, 13, 2251.
doi: 10.1039/C4OB02575J |
[42] |
Rahaman, R.; Devi, N.; Bhagawati, J. R.; Barman, P. RSC Adv. 2016, 6, 18929.
doi: 10.1039/C5RA26425A |
[43] |
Yang, X.; Bao, Y.; Dai, Z.; Zhou, Q.; Yang, F. Green Chem. 2018, 20, 3727.
doi: 10.1039/C8GC01764F |
[44] |
Chen, L.; Zhang, J.; Wei, Y.; Yang, Z.; Liu, P.; Zhang, J.; Dai, B. Tetrahedron 2019, 75, 130664.
doi: 10.1016/j.tet.2019.130664 |
[45] |
Chen, M.; Huang, Z.-T.; Zheng, Q.-Y. Chem. Commun. 2012, 48, 11686.
doi: 10.1039/c2cc36866h |
[46] |
Kumaraswamy, G.; Rajua, R.; Narayanarao, V. RSC Adv. 2015, 5, 22718.
doi: 10.1039/C5RA00646E |
[47] |
Wang, D.; Guo, S.; Zhang, R.; Lin, S.; Yan, Z. RSC Adv. 2016, 6, 54377.
doi: 10.1039/C6RA02302A |
[48] |
Wu, Z.; Li, Y.-C.; Ding, W.-Z.; Zhu, T.; Liu, S.-Z.; Ren, X.; Zou, L.-H. Asian J. Org. Chem. 2016, 5, 625.
doi: 10.1002/ajoc.201600096 |
[49] |
Ghosh, A.; Lecomte, M.; Kim-Lee, S.-H.; Radosevich, A. T. Angew. Chem., Int. Ed. 2019, 58, 2864.
doi: 10.1002/anie.v58.9 |
[50] |
Yang, F.-L.; Tian, S.-K. Angew. Chem. 2013, 125, 5029.
doi: 10.1002/ange.v125.18 |
[51] |
Yang, Y.; Zhang, S.; Tang, L.; Hu, Y.; Zha, Z.; Wang, Z. Green Chem. 2016, 18, 2609.
doi: 10.1039/C6GC00313C |
[52] |
Mumtaz, Y.; Liu, J. Asian J. Org. Chem. 2022, 11, e202200104.
|
[53] |
Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Org. Lett. 2006, 8, 565.
doi: 10.1021/ol052615c |
[54] |
Silveira, C. C.; Mendes, S. R.; Wolf, L.; Martins, G. M. Tetrahedron Lett. 2010, 51, 2014.
doi: 10.1016/j.tetlet.2010.02.038 |
[55] |
Marcantoni, E.; Cipolletti, R.; Marsili, L.; Menichetti, S.; Properzi, R.; Viglianisi, C. Eur. J. Org. Chem. 2013, 132.
|
[56] |
Qi, H.; Zhang, T.; Wan, K.; Luo, M. J. Org. Chem. 2016, 81, 4262.
doi: 10.1021/acs.joc.6b00636 |
[57] |
Gupta, P. K.; Yadav, A. K.; Sharma, A. K.; Singh, K. N. Org. Biomol. Chem. 2021, 19, 3484.
doi: 10.1039/D1OB00377A |
[58] |
Li, J.; Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Biomol. Chem. 2016, 14, 9384.
doi: 10.1039/C6OB01528J |
[59] |
Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. J. Org. Chem. 2016, 81, 7771.
doi: 10.1021/acs.joc.6b01428 |
[60] |
Pandey, A. K.; Chand, S.; Singh, R.; Kumar, S.; Singh, K. N. ACS Omega 2020, 5, 7627.
doi: 10.1021/acsomega.0c00472 pmid: 32280906 |
[61] |
Leng, F.; Huang, J.; Yu, N.; Wang, G. Tetrahedron Lett. 2021, 85, 153488.
doi: 10.1016/j.tetlet.2021.153488 |
[62] |
Zhang, L.-Y.; Wu, Y.-H.; Wang, N.-X.; Gao, X.-W.; Yan, Z.; Xu, B.-C.; Liu, N.; Wang, B.-Z.; Xing, Y. Eur. J. Org. Chem. 2021, 1446.
|
[63] |
Cironis, N.; Yuan, K.; Thomas, S. P.; Ingleson, M. J. Eur. J. Org. Chem. 2022, e202101394.
|
[64] |
Zhang, B.; Li, X.; Li, X.; Yu, Z.; Zhao, B.; Wang, X.; Du, Y.; Zhao, K. J. Org. Chem. 2021, 86, 17274.
doi: 10.1021/acs.joc.1c02404 |
[1] | 夏登鹏, 罗锦昀, 何林, 蔡志华, 杜广芬. 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024, 44(2): 622-630. |
[2] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 贾小英, 普佳霞, 韩丽荣, 李清寒. 含双杂原子苯并[d]五元杂环硫醚类化合物的合成研究进展[J]. 有机化学, 2024, 44(1): 18-40. |
[5] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[6] | 王灵娜, 刘晓庆, 林钢, 金泓颖, 焦民均, 刘雪粉, 罗书平. 光促进双(4-二苯甲酮)苯醚催化C(sp3)—H键活化构建C—S键[J]. 有机化学, 2023, 43(8): 2848-2854. |
[7] | 吴敏, 刘博, 袁佳龙, 付强, 汪锐, 娄大伟, 梁福顺. 可见光媒介的C—S键构建反应研究进展[J]. 有机化学, 2023, 43(7): 2269-2292. |
[8] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
[9] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[10] | 程飞, 孙琪雯, 卢江溶, 王兴兰, 张吉泉. 芳基二硫醚作为自由基硫试剂构建C—S键研究进展[J]. 有机化学, 2023, 43(11): 3728-3744. |
[11] | 刘晓洁, 徐必平, 苏伟平. 铑催化羧酸原位生成酰氟的脱羰Suzuki-Miyaura偶联[J]. 有机化学, 2022, 42(7): 2184-2191. |
[12] | 李雪, 王聪, 贾铁争. 砜亚胺N-芳基化的研究进展及其应用[J]. 有机化学, 2022, 42(3): 714-731. |
[13] | 吴福芳, 李雪健, 贾浩, 韩宣振, 沈晓宝. 碘(III)介导的碳自由基参与的氧化偶联反应[J]. 有机化学, 2022, 42(3): 884-890. |
[14] | 从思琪, 刘梦亚, 彭思远, 郑秋翠, 李梦娇, 郭艳, 罗斐贤. 硅亲电试剂参与碳硅交叉偶联反应研究进展[J]. 有机化学, 2022, 42(2): 384-390. |
[15] | 魏兆鑫, 王仁杰, 张永红, 王斌, 夏昱, 金伟伟, 刘晨江. 碘化钾介导的电催化N-酰基/磺酰基次磺酰胺的合成[J]. 有机化学, 2022, 42(11): 3730-3739. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||