有机化学 ›› 2025, Vol. 45 ›› Issue (4): 1097-1118.DOI: 10.6023/cjoc202407046 上一篇 下一篇
综述与进展
收稿日期:2024-07-31
修回日期:2024-09-06
发布日期:2024-10-10
基金资助:
Lingwei Wu, Hao Cui, Xiao Zhang(
)
Received:2024-07-31
Revised:2024-09-06
Published:2024-10-10
Contact:
* E-mail: Supported by:文章分享
可见光光催化剂具有将光能转化为化学能的特点, 为在温和条件下实现化学转化开辟了新的途径. 水作为一种安全、廉价、清洁、丰富的反应介质, 将其应用于有机化学反应能够有效地减少环境污染. 可见光光催化剂和水的结合是发展绿色可持续化学目标之一, 可见光介导的水相反应综合了二者的优点, 有望更好地发挥“绿色化学”理念. 由于大多数有机底物和催化剂在水中的溶解性差, 近年来发展了一些水溶性可见光光催化剂用于有机转化. 此外, 水溶性提升了催化剂的生物兼容性, 进而提高实用性, 将应用扩展至生物领域. 基于此, 本综述总结了近年来报道的水溶性光催化剂, 并依据水溶性光催化体系的不同, 分为水溶性金属、有机小分子和超分子光催化剂三类进行综述.
吴凌苇, 崔浩, 张霄. 水溶性光催化剂介导的水相反应研究进展[J]. 有机化学, 2025, 45(4): 1097-1118.
Lingwei Wu, Hao Cui, Xiao Zhang. Recent Advances in Water-Soluble Photocatalysts-Mediated Aqueous Reactions[J]. Chinese Journal of Organic Chemistry, 2025, 45(4): 1097-1118.
| [1] |
(a) Nicolaou, K. C. Isr. J. Chem. 2018, 58, 104.
|
|
(b) Wang, J.; Wang, Z.; He, W.; Ye, L. Chin. J. Org. Chem. 2024, 44, 1786 (in Chinese).
|
|
|
(王家晟, 王泽树, 何卫民, 叶龙武, 有机化学, 2024, 44, 1786.)
doi: 10.6023/cjoc202401010 |
|
| [2] |
Sheldon, R. A. Green Chem. 2005, 7, 267.
|
| [3] |
(a) Li, C.-J. Chem. Rev. 1993, 93, 2023.
|
|
(b) Li, C.-J. Chem. Rev. 2005, 105, 3095.
|
|
|
(c) Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415.
|
|
|
(d) Javaherian, M.; Movaheditabar, P. J. Iran. Chem. Soc. 2023, 20, 2103.
|
|
| [4] |
Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816.
|
| [5] |
(a) Ciamician, G. Science 1912, 36, 385.
pmid: 17836492 |
|
(b) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
pmid: 17836492 |
|
|
(c) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
pmid: 17836492 |
|
|
(d) Cai, B.; Xuan, J. Chin. J. Org. Chem. 2021, 41, 4565 (in Chinese).
pmid: 17836492 |
|
|
(蔡宝贵, 宣俊, 有机化学, 2021, 41, 4565.)
doi: 10.6023/cjoc202109040 pmid: 17836492 |
|
|
(e) Su, Y.; Zou, Y.; Xiao, W. Chin. J. Org. Chem. 2022, 42, 3201 (in Chinese).
pmid: 17836492 |
|
|
(苏艺雯, 邹有全, 肖文精, 有机化学, 2022, 42, 3201.)
doi: 10.6023/cjoc202207046 pmid: 17836492 |
|
|
(f) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
pmid: 17836492 |
|
| [6] |
(a) Vega-Peñaloza, A.; Mateos, J.; Companyó, X.; Escudero-Casao, M.; Dell'Amico, L. Angew. Chem., Int. Ed. 2021, 60, 1082.
|
|
(b) Lee, Y.; Kwon, M. S. Eur. J. Org. Chem. 2020, 2020, 6028.
|
|
|
(c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
|
|
| [7] |
(a) Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org. Lett. 2015, 17, 4714.
pmid: 21381734 |
|
(b) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
doi: 10.1021/ja108560e pmid: 21381734 |
|
|
(c) Yajima, T.; Ikegami, M. Eur. J. Org. Chem. 2017, 2017, 2126.
pmid: 21381734 |
|
|
(d) Prasad Hari, D.; Hering, T.; König, B. Angew. Chem., Int. Ed. 2014, 53, 725.
pmid: 21381734 |
|
| [8] |
Jeyapalan, V.; Varadharajan, R.; Veerakanellore, G. B.; Ramamurthy, V. J. Photochem. Photobiol. A: Chem. 2021, 420, 113492.
|
| [9] |
Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617.
|
| [10] |
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
|
|
(b) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
|
|
| [11] |
(a) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705.
doi: 10.1021/jacs.8b08052 pmid: 33163257 |
|
(b) Ganley, J. M.; Murray, P. R. D.; Knowles, R. R. ACS Catal. 2020, 10, 11712.
doi: 10.1021/acscatal.0c03567 pmid: 33163257 |
|
| [12] |
Bu, M.; Cai, C.; Gallou, F.; Lipshutz, B. H. Green Chem. 2018, 20, 1233.
|
| [13] |
Shen, T.; Zhou, S.; Ruan, J.; Chen, X.; Liu, X.; Ge, X.; Qian, C. Adv. Colloid Interface Sci. 2021, 287, 102299.
|
| [14] |
Guo, X.; Okamoto, Y.; Schreier, M. R.; Ward, T. R.; Wenger, O. S. Chem. Sci. 2018, 9, 5052.
|
| [15] |
Kerzig, C.; Guo, X.; Wenger, O. S. J. Am. Chem. Soc. 2019, 141, 2122.
|
| [16] |
Zhao, Y.; Zhang, C.; Chu, L.; Zhou, Q.; Huang, B.; Ji, R.; Zhou, X.; Zhang, Y. Water Res. 2022, 225, 119212.
|
| [17] |
Kerzig, C.; Wenger, O. S. Chem. Sci. 2019, 10, 11023.
|
| [18] |
van Lier, R. C. W.; de Bruijn, A. D.; Roelfes, G. Chem.-Eur. J. 2021, 27, 1430.
|
| [19] |
Nguyen, T.-T. H.; O’Brien, C. J.; Tran, M. L. N.; Olson, S. H.; Settineri, N. S.; Prusiner, S. B.; Paras, N. A.; Conrad, J. Org. Lett. 2021, 23, 3823.
|
| [20] |
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
doi: 10.1021/acs.chemrev.5b00392 pmid: 26756377 |
| [21] |
Xue, D.; Jia, Z.-H.; Zhao, C.-J.; Zhang, Y.-Y.; Wang, C.; Xiao, J. Chem.-Eur. J. 2014, 20, 2960.
|
| [22] |
(a) Yalazan, H.; Akkol, C.; Saka, E. T.; Kantekin, H. Appl. Organomet. Chem. 2023, 37, e6975.
pmid: 34257312 |
|
(b) Li, Z.; Wang, J.-W.; Huang, Y.; Ouyang, G. Chin. J. Catal. 2023, 49, 160 (in Chinese).
pmid: 34257312 |
|
|
(李孜孜, 王嘉蔚, 黄衍钧, 欧阳钢锋, 催化学报, 2023, 49, 160.)
doi: 10.1016/S1872-2067(23)64433-X pmid: 34257312 |
|
|
(c) Wang, J.-W.; Jiang, L.; Huang, H.-H.; Han, Z.; Ouyang, G. Nat. Commun. 2021, 12, 4276.
doi: 10.1038/s41467-021-24647-y pmid: 34257312 |
|
|
(d) Kumar, A.; Prajapati, P. K.; Aathira, M. S.; Bansiwal, A.; Boukherroub, R.; Jain, S. L. J. Colloid Interface Sci. 2019, 543, 201.
pmid: 34257312 |
|
| [23] |
Srinath, S.; Abinaya, R.; Prasanth, A.; Mariappan, M.; Sridhar, R.; Baskar, B. Green Chem. 2020, 22, 2575.
|
| [24] |
(a) Piechowska, P.; Zawirska-Wojtasiak, R.; Mildner-Szkudlarz, S. Nutrients 2019, 11, 814.
|
|
(b) Luo, B.; Song, X. Eur. J. Med. Chem. 2021, 224, 113688.
|
|
| [25] |
(a) Hari, D. P.; König, B. Chem. Commun. 2014, 50, 6688.
|
|
(b) Amos, S. G. E.; Garreau, M.; Buzzetti, L.; Waser, J. Beilstein J. Org. Chem. 2020, 16, 1163.
|
|
| [26] |
Yoshioka, E.; Kohtani, S.; Jichu, T.; Fukazawa, T.; Nagai, T.; Kawashima, A.; Takemoto, Y.; Miyabe, H. J. Org. Chem. 2016, 81, 7217.
doi: 10.1021/acs.joc.6b01102 pmid: 27314306 |
| [27] |
You, G.; Wang, K.; Wang, X.; Wang, G.; Sun, J.; Duan, G.; Xia, C. Org. Lett. 2018, 20, 4005.
|
| [28] |
Wang, H.; Li, Y.; Tang, Z.; Wang, S.; Zhang, H.; Cong, H.; Lei, A. ACS Catal. 2018, 8, 10599.
|
| [29] |
Natarajan, P.; Chuskit, D.; Priya, P. Green Chem. 2019, 21, 4406.
doi: 10.1039/c9gc01557d |
| [30] |
Liu, J.; Yao, H.; Li, X.; Wu, H.; Lin, A.; Yao, H.; Xu, J.; Xu, S. Org. Chem. Front. 2020, 7, 1314.
|
| [31] |
(a) James, N. S.; Joshi, P.; Ohulchanskyy, T. Y.; Chen, Y.; Tabaczynski, W.; Durrani, F.; Shibata, M.; Pandey, R. K. Eur. J. Med. Chem. 2016, 122, 770.
|
|
(b) Sun, C.; Du, W.; Wang, B.; Dong, B.; Wang, B. BMC Chem. 2020, 14, 21.
|
|
| [32] |
Deol, H.; Kumar, M.; Bhalla, V. RSC Adv. 2018, 8, 31237.
|
| [33] |
Cervantes-González, J.; Vosburg, D. A.; Mora-Rodriguez, S. E.; Vázquez, M. A.; Zepeda, L. G.; Gómez, C. V.; Lagunas-Rivera, S. ChemCatChem 2020, 12, 3811.
|
| [34] |
(a) Zhang, W.; Gacs, J.; Arends, I. W. C. E.; Hollmann, F. ChemCatChem 2017, 9, 3821.
pmid: 32802571 |
|
(b) Yuan, B.; Mahor, D.; Fei, Q.; Wever, R.; Alcalde, M.; Zhang, W.; Hollmann, F. ACS Catal. 2020, 10, 8277.
doi: 10.1021/acscatal.0c01958 pmid: 32802571 |
|
| [35] |
Xu, J.; Arkin, M.; Peng, Y.; Xu, W.; Yu, H.; Lin, X.; Wu, Q. Green Chem. 2019, 21, 1907.
|
| [36] |
Nowak-Król, A.; Shoyama, K.; Stolte, M.; Würthner, F. Chem. Commun. 2018, 54, 13763.
|
| [37] |
Renner, R.; Stolte, M.; Heitmüller, J.; Brixner, T.; Lambert, C.; Würthner, F. Mater. Horiz. 2022, 9, 350.
|
| [38] |
Gryszel, M.; Rybakiewicz, R.; Głowacki, E. D. Adv. Sustainable Syst. 2019, 3, 1900027.
|
| [39] |
Gryszel, M.; Schlossarek, T.; Würthner, F.; Natali, M.; Głowacki, E. D. ChemPhotoChem 2023, 7, e202300070.
|
| [40] |
Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
|
| [41] |
(a) Olson, R. A.; Korpusik, A. B.; Sumerlin, B. S. Chem. Sci. 2020, 11, 5142.
|
|
(b) Xu, J.; Jung, K.; Corrigan, N. A.; Boyer, C. Chem. Sci. 2014, 5, 3568.
|
|
| [42] |
Lee, Y.; Kwon, Y.; Kim, Y.; Yu, C.; Feng, S.; Park, J.; Doh, J.; Wannemacher, R.; Koo, B.; Gierschner, J.; Kwon, M. S. Adv. Mater. 2022, 34, 2108446.
|
| [43] |
Ma, F.; Luo, Z.-M.; Wang, J.-W.; Ouyang, G. J. Am. Chem. Soc. 2024, 146, 17773.
|
| [44] |
Singh, P. P.; Srivastava, V. Org. Biomol. Chem. 2021, 19, 313.
|
| [45] |
Chen, K.; Cheng, Y.; Chang, Y.; Li, E.; Xu, Q.-L.; Zhang, C.; Wen, X.; Sun, H. Tetrahedron 2018, 74, 483.
|
| [46] |
Xie, H.-Y.; Han, L.-S.; Huang, S.; Lei, X.; Cheng, Y.; Zhao, W.; Sun, H.; Wen, X.; Xu, Q.-L. J. Org. Chem. 2017, 82, 5236.
|
| [47] |
Tanioka, M.; Oyama, M.; Nakajima, K.; Mori, M.; Harada, M.; Matsuya, Y.; Kamino, S. Phys. Chem. Chem. Phys. 2024, 26, 4474.
doi: 10.1039/d3cp05585j pmid: 38240132 |
| [48] |
Zhang, R.-Z.; Niu, K.-K.; Bi, Y.-S.; Liu, H.; Yu, S.-S.; Wang, Y.-B.; Xing, L.-B. Green Chem. 2024, 26, 2241.
|
| [49] |
(a) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
pmid: 21863792 |
|
(b) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810.
doi: 10.1021/cr200077m pmid: 21863792 |
|
|
(c) Chen, L.; Chen, Q.; Wu, M.; Jiang, F.; Hong, M. Acc. Chem. Res. 2015, 48, 201.
pmid: 21863792 |
|
|
(d) Morimoto, M.; Bierschenk, S. M.; Xia, K. T.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Nat. Catal. 2020, 3, 969.
pmid: 21863792 |
|
|
(e) Mu, C.; Jian, S.; Zhang, M. Chem.-Eur. J. 2024, e202401264.
pmid: 21863792 |
|
| [50] |
Zhang, Z.; Zhao, Z.; Hou, Y.; Wang, H.; Li, X.; He, G.; Zhang, M. Angew. Chem., Int. Ed. 2019, 58, 8862.
|
| [51] |
Noto, N.; Hyodo, Y.; Yoshizawa, M.; Koike, T.; Akita, M. ACS Catal. 2020, 10, 14283.
|
| [52] |
Ren, F.-Y.; Chen, K.; Qiu, L.-Q.; Chen, J.-M.; Darensbourg, D. J.; He, L.-N. Angew. Chem., Int. Ed. 2022, 61, e202200751.
|
| [53] |
Maitra, P. K.; Bhattacharyya, S.; Hickey, N.; Mukherjee, P. S. J. Am. Chem. Soc. 2024, 146, 15301.
|
| [1] | 毛婷, 曾鳞媛, 温吉林, 贾佳. 可见光介导下铱催化脂肪族α-溴代三氟甲基的脱溴环化反应[J]. 有机化学, 2025, 45(7): 2520-2528. |
| [2] | 贺重隆, 周有康, 段新华, 刘乐. 官能团迁移策略在光驱动不饱和烃双官能团化中的应用[J]. 有机化学, 2025, 45(5): 1478-1508. |
| [3] | 谭燕, 应佳乐, 於兵, 陆展. 可见光促进烯基硅化合物有氧氧化-叠氮化反应[J]. 有机化学, 2025, 45(5): 1684-1690. |
| [4] | 周思成, 刘运奎. P/N-杂配铜(I)光催化剂介导的可见光催化反应进展[J]. 有机化学, 2025, 45(5): 1644-1668. |
| [5] | 洪洋, 邓红平. 可见光催化的酸性C(sp3)—H键官能团化反应研究进展[J]. 有机化学, 2025, 45(5): 1569-1590. |
| [6] | 林风, 张艳, 吴明, 刘会艳, 郝文娟, 姜波. 利用可见光引发1,6-烯炔的增环酰化双官能化制备1-茚酮衍生物[J]. 有机化学, 2025, 45(5): 1729-1738. |
| [7] | 李慧, 阿布力米提•阿布都卡德尔, 周磊. 可见光条件下N-苄基苯并三氮唑自由基脱氮气开环合成6-取代菲啶[J]. 有机化学, 2025, 45(5): 1770-1777. |
| [8] | 田曈, 陈镤, 黄华文. 可见光诱导芳香醛与苄烯丙二腈环化合成多取代二氢呋喃[J]. 有机化学, 2025, 45(5): 1763-1769. |
| [9] | 马树超, 陈泽乐, 宣俊. 可见光促进偶氮化合物参与的光化学转化[J]. 有机化学, 2025, 45(5): 1669-1683. |
| [10] | 刘俊杰, 赵红平, 胡媛媛, 汪恒昕, 袁伟明. 可见光诱导镍催化烯烃还原Heck反应[J]. 有机化学, 2025, 45(5): 1691-1697. |
| [11] | 段琛, 沈思语, 赵钰琦, 刘跃, 李薪宇, 张礼智, 李文静. 可见光驱动下蒽醌催化苄基C—H键在水中的氧化反应[J]. 有机化学, 2025, 45(4): 1352-1359. |
| [12] | 赵佳, 甘秋云, 袁耀锋. 自由基磺酰氟化反应研究进展[J]. 有机化学, 2025, 45(4): 1206-1222. |
| [13] | 区洁晴, 屈培珍, 赵亮. 可见光介导下钯催化脂肪族α-溴代三氟甲基的脱溴还原反应[J]. 有机化学, 2025, 45(4): 1334-1341. |
| [14] | 蒋洁, 李佳丽, 潘若涵, 陈宇, 刘佳乐, 唐裕才. 可见光诱导2-芳基吲哚与二氟甲基亚磺酸钠二氟甲基化/环化反应[J]. 有机化学, 2025, 45(4): 1239-1248. |
| [15] | 沈佳斌, 沈超, 章鹏飞. 可见光介导的羰基α位C—H官能团化反应合成萘咪酮类衍生物[J]. 有机化学, 2025, 45(2): 677-685. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||