有机化学 ›› 2025, Vol. 45 ›› Issue (11): 4128-4142.DOI: 10.6023/cjoc202503003 上一篇    下一篇

综述与进展

高效聚集诱导发光光敏剂的合成策略

代鸿宇a, 孙红红a, 魏培发b,*(), 管伟江a,*()   

  1. a 北京化工大学化学学院 化工资源有效利用全国重点实验室 化工资源有效利用全国重点实验室 北京 100029
    b 安徽大学物质科学与信息技术研究院 合肥 230039
  • 收稿日期:2025-03-03 修回日期:2025-06-01 发布日期:2025-06-19
  • 基金资助:
    国家自然科学基金(22422401); 国家自然科学基金(22374007); 国家自然科学基金(22375002); 中央高校基本科研业务费专项资金(JD2507)

Strategies for the Synthesis of High-Efficiency Aggregation-Induced Emission Photosensitizers

Hongyu Daia, Honghong Suna, Peifa Weib,*(), Weijiang Guana,*()   

  1. a State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029
    b Institutes of Physical Science and Information Technology, Anhui University, Hefei 230039
  • Received:2025-03-03 Revised:2025-06-01 Published:2025-06-19
  • Contact: *E-mail: pfwei@ahu.edu.cn; wjguan@mail.buct.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22422401); National Natural Science Foundation of China(22374007); National Natural Science Foundation of China(22375002); Fundamental Research Funds for the Central Universities(JD2507)

聚集诱导发光(AIE)光敏剂即便处于高分子化或聚集态, 仍能维持强荧光特性且高效产生活性氧(ROS), 已成为新一代光动力治疗(PDT)候选材料. 围绕近年研究领域中分子电子结构与分子运动调控策略的相关进展, 重点梳理了构建供体-受体(D-A)框架的合成策略(如Suzuki-Miyaura偶联、Stille偶联、Buchwald-Hartwig偶联、Sonogashira偶联、Knoevenagel缩合), 调控π共轭骨架的合成策略(如Heck反应、Vilsmeier-Haac反应), 增强自旋轨道耦合(SOC)的合成策略(如Menshutkin反应、点击反应、金属配位反应), 以及分子运动限制策略(聚合物封装和纳米颗粒负载). 通过多维分子设计与材料工程协同, AIE光敏剂已在近红外成像与深部PDT疗效方面取得了显著进展. 展望未来, 可以借助机器学习辅助的分子筛选和多模态递送平台, 加速AIE光敏剂向临床深部实体瘤精准光疗的转化.

关键词: 聚集诱导发光, 光敏剂, 供体-受体框架, 近红外光疗, 活性氧

Aggregation-induced emission (AIE) photosensitizers have emerged as a new generation of candidates for photodynamic therapy (PDT) owing to their ability to maintain strong fluorescence and efficiently generate reactive oxygen species (ROS) in polymerized and aggregated states. Focusing on the recent research progress in molecular electronic structure and molecular motion regulation strategies, synthetic methodologies for constructing donor-acceptor (D-A) frameworks (such as Suzuki-Miyaura coupling, Stille coupling, Buchwald-Hartwig coupling, Sonogashira coupling, and Knoevenagel condensation), strategies for tuning π-conjugated backbones (such as the Heck reaction and Vilsmeier-Haack reaction), methods for enhancing spin-orbit coupling (SOC) including Menshutkin reactions, click chemistry, and metal coordination reaction, as well as motion-restricting strategies, including polymer encapsulation and nanoparticle loading, are mainly summarized. Through synergistic multidimensional molecular design and materials engineering, AIE photosensitizers have achieved significant improvements in near-infrared imaging and deep-tissue PDT efficacy. Looking forward, machine learning-assisted molecular screening and multimodal delivery platforms accelerate their clinical translation toward precision phototherapy of deep solid tumors.

Key words: aggregation-induced emission, photosensitizer, donor-acceptor framework, near-infrared phototherapy, reactive oxygen species