有机化学    

综述与进展

可见光催化烯烃的氢胺化和氢(磺)酰胺化反应

张皓然a,b, 贾均松a, 俞琼b, 吴宇a, 李玉龙*,a, 舒伟*,b   

  1. a四川轻化工大学化学与环境工程学院、绿色催化四川省高校重点实验室,四川自贡 643000;
    b南方科技大学深圳市格拉布斯研究院、化学系、广东省催化重点实验室,广东深圳 518055
  • 收稿日期:2025-11-24 修回日期:2026-01-02
  • 基金资助:
    国家自然学科基金(No. 22371115, 22171127, 22373056, 22401139, 22501125, 22501190), 四川省自然科学基金(2025ZNSFSC0128)资助项目.

Visible-Light-Catalyzed Hydroamination, Hydroamidation and Hydrosulfonamidation of Alkenes

Zhang Haorana,b, Jia Jun-Songa, Yu Qiongb, Wu Yua, Li Yulong*,a, Shu Wei*,b   

  1. aCollege of Chemistry and Environmental Engineering, Key Laborotory of Green Chemistry of Sichuan Instituttes of Higher Education, SichuanUniversity of Science and Engineering, Zigong 643000, Sichuan;
    bShenzhen Grubbs Institute, Department of Chemistry and Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong
  • Received:2025-11-24 Revised:2026-01-02
  • Contact: *E-mail: shuw@sustech.edu.cn; yu_longli@suse.edu.cn
  • Supported by:
    NSFC (No. 22371115, 22171127, 22373056, 22501125, 22501190), Natural Science Foundation of Sichuan Province (2025ZNSFSC0128).

N-烷基胺、酰胺与磺酰胺作为重要的含氮结构单元, 广泛存在于药物分子、农用化学品以及功能材料中, 其高效、精准合成对分子设计与后期修饰具有重要意义. 现有合成方法中, C—N 键构建是获取此类化合物的关键策略之一, 但传统方法构建策略通常依赖预官能化底物、强氧化/还原或高温反应条件, 容易导致过烷基化、副反应增多、区域与化学选择性控制不佳, 以及对复杂分子骨架的兼容性有限等问题. 近年来, 可见光驱动的烯烃氢胺化/氢酰胺化/氢磺酰胺化反应通过单电子转移、质子耦合电子转移、氢原子转移等多种反应机制, 在温和条件下, 实现了将简单烯烃与多种氮源的直接偶联, 从而高效合成N-烷基胺、酰胺与磺酰胺. 该反应使用烯烃作为烷基化试剂, 表现出优异的步骤经济性和官能团兼容性. 本文系统综述可见光催化烯烃氢胺化/氢酰胺化/氢磺酰胺化领域的进展与关键反应路径, 并总结了不同催化体系的选择性调控策略和适用范围, 并对该领域的后续发展进行了展望, 以期为相关合成方法的选择与应用提供理论依据和实践参考.

关键词: 烯烃, 可见光催化, 氢官能团化, 碳氮成键, 含氮化合物

N-alkylamines, amides, and sulfonamides, a class of important nitrogen-containing structural units, are ubiquitous in pharmaceutical molecules, agrochemicals, and functional materials. To this end, the efficient and precise synthesis of such substructures is of great significance for molecular design and late-stage modification. Among various synthetic approaches, C-N bond formation represents one of the key strategies. However, traditional C—N bond formation strategies heavily rely on pre-functionalized substrates under strong oxidative/reductive conditions, or elevated reaction temperature, which often suffer from over-alkylation, competitive side reactions, poor regio- and chemoselectivity, limited compatibility with molecular complexity. Over past years, visible-light-driven hydroamination, hydroamidation, and hydrosulfonamidation of alkenes have achieved efficient synthesis of N-alkylamines, amides, and sulfonamides by direct cross-coupling of simple alkenes with various nitrogen sources under mild conditions through different reaction mechanisms such as single-electron transfer, proton-coupled electron transfer, and hydrogen atom transfer. These reactions utilize alkenes as alkylation reagents, demonstrating excellent step-economy and functional group compatibility. This review summarizes the progress and key reaction pathways in the field of visible-light-catalyzed hydroamination, hydroamidation, and hydrosulfonamidation of alkenes, with an emphasis on selectivity control and scope of different catalytic systems, and provides an outlook on future developments in this area, aiming to offer theoretical and practical guidance for further development and application to target synthesis in related areas.

Key words: alkenes, visible-light-catalysis, hydrofunctionalizations, C—N bond-formation, nitrogen-containing compounds