有机化学 ›› 2013, Vol. 33 ›› Issue (08): 1628-1646.DOI: 10.6023/cjoc201211039 上一篇 下一篇
综述与进展
于海珠, 苏圣钦, 张弛, 党智敏
收稿日期:
2012-11-21
修回日期:
2013-02-18
发布日期:
2013-03-14
通讯作者:
党智敏
E-mail:dangzm@ustb.edu.cn
基金资助:
国家自然科学基金(No. 21202006)和北京科技大学基本科研业务基金(No. FRF-TP-13-023A)资助项目.
Yu Haizhu, Su Shengqin, Zhang Chi, Dang Zhi-Min
Received:
2012-11-21
Revised:
2013-02-18
Published:
2013-03-14
Supported by:
Project supported by the National Natural Science Foundation of China (No. 21202006) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-13-023A).
文章分享
作为廉价、新型的C—H 官能团化反应催化剂, 铜络合物在多官能团有机物的制备中表现出良好的应用潜力. 系统总结了2008 年以来报道的铜催化C—H 官能团化反应, 其中分别阐述了一价及二价铜在sp, sp2及sp3 C—H 官能团化反应的研究进展, 在对反应条件、底物适用性等进行概括的基础上, 对各反应可能机理也进行也系统性归纳.
于海珠, 苏圣钦, 张弛, 党智敏. 铜催化C—H官能团化反应的研究进展[J]. 有机化学, 2013, 33(08): 1628-1646.
Yu Haizhu, Su Shengqin, Zhang Chi, Dang Zhi-Min. Recent Progress in Copper Catalyzed C—H Functionalizations[J]. Chin. J. Org. Chem., 2013, 33(08): 1628-1646.
[1] For recent examples, please see:(a) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041. (b) Li, B.; Tian, S.; Fang, Z.; Shi, Z. Angew. Chem., Int. Ed. 2008, 47, 1115.(c) Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452.(d) Grimster, N. P.; Gauntlett, C.; Godfrey, C. M. R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125.(e) Xiao, B.; Fu, Y.; Xu, J.; Gong, T. J.; Dai, J. J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.(f) Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am. Chem. Soc. 2006, 128, 2528.(g) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759.(h) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46, 2578.(i) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.(j) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048.(k) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500.(l) Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2011, 133, 400.(m) Kakiuchi, F.; Kochi, T.; Mizushima, E.; Murai, S. J. Am. Chem. Soc. 2010, 132, 17741.(n) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250.(o) Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.-K.; Endo, K.; Shibata, T. J. Org. Chem. 2008, 693, 3939.(p) Xiao, B.; Gong, T. J.; Xu, J.; Liu, Z.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466;(q) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332.(r) Wang, Y.; Cheng, G.; Cui, L. Chin. J. Org. Chem. 2012, 32, 2018 (in Chinese).(王勇, 程国林, 崔秀灵, 有机化学, 2012, 32, 2018.)(s) Li, D.; He, C.; Cai, H.; Wang, G. Chin. J. Org. Chem. 2013, 33, 203 (in Chinese).(李丹丹, 何程林, 蔡海婷, 王官武, 有机化学, 2013, 33, 203.)[2] Recent examples for other types of copper catalyzed C—C bond formation reactions, please see:(a) Li, Z.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8928.(b) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu. J. Q. J. Am. Chem. Soc. 2006, 128, 6790.(c) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842.(d) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.(e) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.(f) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.(g) Fuller, P. H.; Chemler, S. R. Org. Lett. 2007, 9, 5477.(h) Yang, C.-T.; Zhang, Z.-Q.; Liang, J.; Liu, J.-H.; Lu, X.-Y.; Chen, H.-H.; Liu, L. J. Am. Chem. Soc. 2012, 134, 11124.(i) Kohmura, Y.; Katsuki, T. Tetrahedron Lett. 2000, 41, 3941.(j) Kohmura, Y.; Katsuki, T. Synlett 1999, 1231.(k) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.; Li, C.-J. Adv. Synth. Catal. 2010, 352, 632.(l) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268.(m) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, Q. Angew. Chem., Int. Ed. 2011, 50, 7140.(n) Yang, C.-T.; Zhang, Z.-Q.; Liu, Y.-C.; Liu, L. Angew. Chem, Int. Ed. 2011, 50, 3904.(o) Bellina, F.; Rossi, S. Adv. Synth. Catal. 2010, 352, 1223.(p) Moure, M. J.; SanMartin, R.; Dominguez, E. Angew. Chem., Int. Ed. 2012, 124, 3274.(q) Yang, C.-T.; Fu, Y.; Huang, Y.-B.; Yi, J.; Guo, Q.-X.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 7398.(r) Qin, Y.; Peng, Q.; Chin. J. Org. Chem. 2011, 31, 1169 (in Chinese).(秦元成, 彭强, 有机化学, 2011, 31, 1169.)(s) Liao, Q.; Xi, C. Chin. J. Org. Chem. 2012, 32, 986 (in Chinese).(廖骞, 席婵娟, 有机化学, 2012, 32, 986.)(t) Cui, P.; Liu, H.; Zhang, D.; Wang, C. Chin. J. Org. Chem. 2012, 32, 1401 (in Chinese).(崔朋雷, 刘海燕, 张冬暖, 王春, 有机化学, 2012, 32, 1401.)(t) Liu, W.; Bi, Y. Chin. J. Org. Chem. 2012, 32, 1041 (in Chinese).(刘伟, 毕艳兰, 有机化学, 2012, 32, 1041.)[3] Ljusberg, H.; Wahren, R. Acta Chem. Scand. 1973, 27, 2717.[4] Wulfman, D. S.; Mcdaniel, R. S.; Peace, B. W. Tetrahedron Lett. 1976, 32, 1241.[5] Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem. 2010, 75, 4841.[6] Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2011, 13, 5976.[7] Ban, I.; Sudo, T.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 3607.[8] Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.[9] (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.(b) Kulkarni, A. A.; Daugulis, O. Synthesis 2009, 4087[10] Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062.[11] Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.[12] Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.[13] Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.[14] Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727.[15] Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.[16] (a) Ljusberg, H.; Wahren, R. Acta Chem. Scand. 1973, 27, 2717.(b) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 49, 9350.[17] Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2009, 11, 1511.[18] Fan, S.; Chen, Z.; Zhang, X. Org. Lett. 2012, 14, 4950.[19] Ye, S.; Liu, G.; Pu. S.; Wu, J. Org. Lett. 2012, 14, 70.[20] Hwu, J. R.; Chuang, K.-S.; Chuang, S. H.; Tsay, S.-C. Org. Lett. 2005, 7, 1545.[21] Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458.[22] (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120.(b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.(c) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.(d) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679 (in Chinese).(潘菲, 施章杰, 化学学报, 2012, 70, 1679.)(e) Lv, C.; Shen, Q.; Liu, D. Chin. J. Org. Chem. 2012, 32, 1380 (in Chinese).(吕翠萍, 沈其龙, 刘丹, 有机化学, 2012, 32, 1380.)(f) Qing, F. Chin. J. Org. Chem. 2012, 32, 815 (in Chinese).(卿凤翎, 有机化学, 2012, 32, 815.)[23] Besselievre, F.; Piguel, S.; Betzer, M. F.; Grierson, S. D. Org. Lett. 2008, 10, 4029.[24] Axelrod, B.; Belzile, J. R. J. Org. Chem. 1958, 23, 919.[25] Kawano, T.; Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2010, 75, 1764.[26] Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 4156.[27] (a) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.(b) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 4884.[28] Huang, G.; Sun, H.; Qiu, X.; Jin, C.; Lin, C.; Shen, Y.; Jiang, J.; Wang, L. Org. Lett. 2011, 13, 5224.[29] Hu, X. L. Chem. Sci. 2011, 2, 1867.[30] Ren, P.; Salihu, I.; Scopelliti, R.; Hu, X. Org. Lett. 2012, 14, 1748.[31] Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081.[32] Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115.[33] Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem. 2010, 75, 4841.[34] Liao, Q.; Zhang, L.; Li, S.; Xi, C. Org. Lett. 2011, 13, 228.[35] Inomata, H.; Ogata, K.; Fukuzawa, S.-I.; Hou, Z. Org. Lett. 2012, 14, 3986.[36] (a) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670.(b) Ariafard, A.; Zarkoob, F.; Batebi, H.; Stranger, R.; Yate, B. F. Organometallics 2011, 30, 6218.[37] Tang, C.-H.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924.[38] Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. J. Org. Chem. 2008, 73, 1906.[39] Zhang, K.; Huang, Y.; Chen, R. Tetrahedron Lett. 2010, 51, 5463.[40] Yang, F.; Li, J.; Xie, J.; Huang, Z.-Z. Org. Lett. 2010, 12, 5214.[41] Wu, J.-C.; Song, R.-J.; Wang, Z.-Q.; Huang, X.-C.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 3453.[42] Fuentes, M. á.; Monge, M.; Olmos, M. E.; Rodríguez-Castillo, M.; Caballeroa, A. Inorg. Chim. Acta 2011, 369, 146.[43] Morilla, M. E.; Díaz-Requejo, M. M.; Belderrain, Y. R.; Nicasio, M. C.; Trofimenko, S.; Pérez, P. J. Organometallics 2004, 23, 293.[44] Fructos, R. M.; Belderrain, R. T.; Frémont, P.; Scott, M. N.; Nolan, P. S.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284.[45] Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.[46] Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.[47] Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.[48] Qin, Xu.-R.; Feng, B.-Y.; Dong, J.-X.; Li, X.-Y.; Yue, Y.; Lan, J.; You, J.-S. J. Org. Chem. 2012, 77, 7677[49] Qu, G.-R.; Liang, L.; Niu, H.-Y.; Rao, W.-H.; Guo, H.-M.; Fossey, J. S. Org. Lett. 2012, 14, 4494.[50] Ton, T. M. U.; Himawan, F.; Chang, J. W. W.; Chan, P. W. H. Chem.-Eur. J. 2012, 18, 12020.[51] Kwong, H.-L.; Lee, W.-S. Tetrahedron: Asymmetry 2000, 11, 2299.[52] Phipps, R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt, M. J. J. Am. Chem. Soc. 2012, 134, 10773.[53] Moody, C. L.; Franckevičius, V.; Drouhin, P.; Klein, J. E. M. N.; Taylor, R. J. K. Tetrahedron Lett. 2012, 53, 1897.[54] Bassleer, R.; Depauwgillet, M. C.; Massart, B.; Marnette, J. M.; Wiliquet, P.; Caprasse, M.; Angenot, L. Planta Med. 1982, 45, 123.[55] (a) Jia, Y. X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636. (b) Perry, A.; Taylor, R. J. K. Chem. Commun. 2009, 3249.[56] Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. J. Org. Chem. 1991, 56, 6527.[57] Posner, G. H. Org. React. 1975, 22, 253.[58] (a) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2012, 14, 1472. (b) Wang, Z.-L.; Zhan, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560.[59] Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900.[60] Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178.[61] Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298.[62] Wang, X.; Jin, Y.; Zhao, Y. Zhao, Y.; Zhu, L.; Fu, H. Org. Lett. 2012, 14, 452.[63] Ogura, H.; Takayanagi, H.; Yamazaki, Y.; Yonezawa, S.; Takagi, H.; Kobayashi, S.; Kamoshita, K. J. Med. Chem. 1972, 15, 923.[64] Mitsuda, S.; Fujiwara, T.; Kimigafukuro, K.; Monguchi, D.; Mori, A. Tetrahedron Lett. 2012, 68, 3585.[65] Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.[66] (a) Viirre, R. D.; Evindar, G.; Batey, R. A. J. Org. Chem. 2008, 73, 3452.(b) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802.[67] Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526.[68] Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2011, 13, 5976.[69] Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 3072.[70] He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108, 1245.[71] (a) Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063. (b) Guru, M. M.; Ali, M. A.; Punniyamurthy, T. J. Org. Chem. 2011, 76, 5295.[72] Tang, B.-X.; Song, R.-J.; Wu, C.-Y.; Liu, Y.; Zhou, M.-B.; Li, J.-H. J. Am. Chem. Soc. 2010, 132, 8900.[73] Guru, M. M.; Ali, M. A.; Punniyamurthy, T. Org. Lett. 2011, 13, 1194.[74] Lu, J.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 3694.[75] Yang, L.; Lu, Z.; Stahl, S. S. Chem. Commun. 2009, 6460.[76] (a) Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2007, 26, 4546.(b) Yu, H.-Z.; Jiang, Y.-Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132, 18078.(c) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.(d) Johnson, C. R.; Dutra, G. A. J. Am. Chem. Soc. 1973, 95, 7783.(e) Kochi, J. K. J. Am. Chem. Soc. 1957, 79, 2942.(f) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 856.(g) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 843.(h) Cohen, T.; Lewarchik, R. J.; Tarino, J. Z. J. Am. Chem. Soc. 1974, 96, 7753.[77] Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.[78] (a) Johnson, C. R.; Dutra, G. A. J. Am. Chem. Soc. 1973, 95, 7783.(b) Kochi, J. K. J. Am. Chem. Soc. 1957, 79, 2942.(c) Jenkins, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 856.(d) Cohen, T.; Lewarchik, R. J.; Tarino, J. Z. J. Am. Chem. Soc. 1974, 96, 7753.[79] Wei, Y.; Zhao, H.; Kan, J. Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522.[80] Xu, Z.; Yu, X.; Feng, X. Bao, M. J. Org. Chem. 2011, 76, 6901.[81] Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. Chem. 2010, 75, 261.[82] Rueping, M.; Tolstoluzhsky, N. Org. Lett. 2011, 13, 1095.[83] Tolstoluzhsky, N.; Gorobets, N.; Kolos, N.; Desenko, S. J. Comb. Chem. 2008, 10, 893.[84] Rueping, M.; Nachtsheim, B. J.; Scheidt, T. Org. Lett. 2006, 8, 3717.[85] Thi, M. U. T.; Tejo, C.; Tiong, D. L. Y.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 7344.[86] Zhang, G.; Ma, Y.; Wang, S.; Zhang, Y.; Wang, R. J. Am. Chem. Soc. 2012, 134, 12334.[87] Guin, S.; Ghsh, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2011, 13, 5976.[88] Recent examples for theoretical studies on Cu catalyzed C—H functionalizations, please see:(a) Santoro, S.; Liao, R.-Z.; Himo, F. J. Org. Chem. 2011, 76, 9246.(b) Chen, B.; Hou, X.-L.; Li, Y.-X.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 7668.(c) Wang, M.; Fan, T.; Lin, Z. Organometallics 2012, 31, 560.(d) Cheng, G.-J.; Song, L.-J.; Yang, Y.-F.; Zhang, X.-H.; Wiest, O.; Wu, Y.-D. ChemSusChem 2013, ASAP (DOI: 10.1002/cplu. 201300117). |
[1] | 陈雯雯, 张琴, 张松月, 黄芳芳, 张馨尹, 贾建峰. 无光催化剂条件下可见光诱导炔基碘和亚磺酸钠偶联反应[J]. 有机化学, 2024, 44(2): 584-592. |
[2] | 赵茜帆, 陈永正, 张世明. 碳基非金属催化剂在有机合成领域的应用及机理研究[J]. 有机化学, 2024, 44(1): 137-147. |
[3] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[4] | 陈祖佳, 宇世伟, 周永军, 李焕清, 邱琪雯, 李妙欣, 汪朝阳. BF3•OEt2作为催化剂与合成子在有机合成中的应用进展[J]. 有机化学, 2023, 43(9): 3107-3118. |
[5] | 蒋宜欣, 唐伯孝, 毛海波, 陈雪霞, 俞洋杰, 全翠英, 徐昭阳, 石金慧, 刘益林. 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023, 43(9): 3210-3215. |
[6] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[7] | 归春明, 周潼瑶, 王海峰, 严琼姣, 汪伟, 黄锦, 陈芬儿. 可见光氧化还原催化炔基化反应的研究进展[J]. 有机化学, 2023, 43(8): 2647-2663. |
[8] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[9] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[10] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[11] | 李春生, 连晓琪, 陈莲芬. 铜催化亚砜叶立德与邻苯二胺[4+2]环加成反应[J]. 有机化学, 2023, 43(4): 1492-1498. |
[12] | 刘洋, 黄翔, 王敏, 廖建. 铜催化环酮亚胺与β,γ-不饱和N-酰基吡唑不对称Mannich-Type反应[J]. 有机化学, 2023, 43(4): 1499-1509. |
[13] | 童宇星, 王子维, 刘奔, 徐耀威, 高颂, 唐向兵, 张兴华. 吲哚-3-硫醚类化合物的合成研究进展[J]. 有机化学, 2023, 43(4): 1310-1324. |
[14] | 刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101. |
[15] | 魏文婷, 李壮壮, 李婉迪, 李嘉琪, 石先莹. 纯水及空气中芳香羧酸和丙烯酸酯氧化偶联构筑苯酞的绿色方法[J]. 有机化学, 2023, 43(3): 1177-1186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||