有机化学 ›› 2021, Vol. 41 ›› Issue (1): 384-393.DOI: 10.6023/cjoc202005021 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
王向阳a, 高君青a, 徐学涛a,*(), 方萍b,*(), 梅天胜b
收稿日期:
2020-05-09
修回日期:
2020-07-28
发布日期:
2020-08-06
通讯作者:
徐学涛, 方萍
作者简介:
基金资助:
Xiangyang Wanga, Junqing Gaoa, Xuetao Xua,*(), Ping Fangb,*(), Tiansheng Meib
Received:
2020-05-09
Revised:
2020-07-28
Published:
2020-08-06
Contact:
Xuetao Xu, Ping Fang
Supported by:
文章分享
砜是天然产物和活性分子中常见的结构, 也是合成反应的重要中间体. 利用5-氯-8-氨基喹啉(AQ')作为双齿导向基团, 以各种芳基亚磺酸钠为磺酰化试剂, 通过铜催化实现了邻位C(sp 2)—H直接磺酰化. 该反应具有较高的官能团兼容性和广泛的底物范围, 适用于具有双取代基和稠环的底物. 另外, AQ'作为双齿导向基团易于脱去, 为合成砜类化合物提供了一种新型的方法. 更重要的是该反应放大至克级规模依然具有良好收率.
王向阳, 高君青, 徐学涛, 方萍, 梅天胜. 铜催化的5-氯-8-氨基喹啉导向的邻位磺酰化[J]. 有机化学, 2021, 41(1): 384-393.
Xiangyang Wang, Junqing Gao, Xuetao Xu, Ping Fang, Tiansheng Mei. Copper-Catalyzedortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 384-393.
Entry | [M] | Additive | Base | Solvent | Yield b /% |
---|---|---|---|---|---|
1 c | CuCl | PhCOOH | KOPiv | DMF | 38 |
2 c | Cu(OAc) 2 •H 2O | PhCOOH | KOPiv | DMF | 46 |
3 c | CuBr 2 | PhCOOH | KOPiv | DMF | 10 |
4 c | Cu(OTf) 2 | PhCOOH | KOPiv | DMF | 46 |
5 c | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 59 |
6 c | — | PhCOOH | KOPiv | DMF | Trace |
7 cd | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 45 |
8 e | Cu(OAc) 2 | 3,4-Dimethylbenzoic acid | KOPiv | DMF | 66 |
9 e | Cu(OAc) 2 | 2,4,6-Trimethylbenzoic acid | KOPiv | DMF | 57 |
10 e | Cu(OAc) 2 | 4- tert-Butylbenzoic acid | KOPiv | DMF | 58 |
11 e | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 72 |
12 f | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 62 |
13 | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 71 |
14 | Cu(OAc) 2 | PhCOOH | — | DMF | 13 |
15 | Cu(OAc) 2 | PhCOOH | KOAc | DMF | 60 |
16 | Cu(OAc) 2 | PhCOOH | NaOPiv •H 2O | DMF | 61 |
17 | Cu(OAc) 2 | PhCOOH | K 2CO 3 | DMF | 36 |
18 | Cu(OAc) 2 | PhCOOH | KOPiv | DMSO | 66 |
19 | Cu(OAc) 2 | PhCOOH | KOPiv | DCE | 17 |
20 | Cu(OAc) 2 | PhCOOH | KOPiv | CH 3CN | 46 |
21 | Cu(OAc) 2 | PhCOOH | KOPiv | 1,4-Dioxane | 17 |
22 | Cu(OAc) 2 (10 mol%) | PhCOOH (20 mol%) | KOPiv | DMF | 58 |
23 | Cu(OAc) 2 (20 mol%) | PhCOOH (30 mol%) | KOPiv | DMF | 81 (79) g |
24 | Cu(OAc) 2 (20 mol%) | PhCOOH (40 mol%) | KOPiv | DMF | 73 |
Entry | [M] | Additive | Base | Solvent | Yield b /% |
---|---|---|---|---|---|
1 c | CuCl | PhCOOH | KOPiv | DMF | 38 |
2 c | Cu(OAc) 2 •H 2O | PhCOOH | KOPiv | DMF | 46 |
3 c | CuBr 2 | PhCOOH | KOPiv | DMF | 10 |
4 c | Cu(OTf) 2 | PhCOOH | KOPiv | DMF | 46 |
5 c | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 59 |
6 c | — | PhCOOH | KOPiv | DMF | Trace |
7 cd | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 45 |
8 e | Cu(OAc) 2 | 3,4-Dimethylbenzoic acid | KOPiv | DMF | 66 |
9 e | Cu(OAc) 2 | 2,4,6-Trimethylbenzoic acid | KOPiv | DMF | 57 |
10 e | Cu(OAc) 2 | 4- tert-Butylbenzoic acid | KOPiv | DMF | 58 |
11 e | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 72 |
12 f | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 62 |
13 | Cu(OAc) 2 | PhCOOH | KOPiv | DMF | 71 |
14 | Cu(OAc) 2 | PhCOOH | — | DMF | 13 |
15 | Cu(OAc) 2 | PhCOOH | KOAc | DMF | 60 |
16 | Cu(OAc) 2 | PhCOOH | NaOPiv •H 2O | DMF | 61 |
17 | Cu(OAc) 2 | PhCOOH | K 2CO 3 | DMF | 36 |
18 | Cu(OAc) 2 | PhCOOH | KOPiv | DMSO | 66 |
19 | Cu(OAc) 2 | PhCOOH | KOPiv | DCE | 17 |
20 | Cu(OAc) 2 | PhCOOH | KOPiv | CH 3CN | 46 |
21 | Cu(OAc) 2 | PhCOOH | KOPiv | 1,4-Dioxane | 17 |
22 | Cu(OAc) 2 (10 mol%) | PhCOOH (20 mol%) | KOPiv | DMF | 58 |
23 | Cu(OAc) 2 (20 mol%) | PhCOOH (30 mol%) | KOPiv | DMF | 81 (79) g |
24 | Cu(OAc) 2 (20 mol%) | PhCOOH (40 mol%) | KOPiv | DMF | 73 |
[1] |
Patai S.; Rappoport C.Z.; Stirling J.M. The Chemistry of Sulfones and Sulfoxides, Wiley, New York , 1988.
|
[2] |
Lopez de Compadre, R.L.; Pearlstein, R.A.; Hopfinger, A.J.; Seyde, J.K. J. Med. Chem. 1987, 30, 900.
|
[3] |
Iversen P.; Tyrrell C.J.; Kaisary A.V.; Anderson J.B.; Van Poppel, H.E.I. N.; Tammela, T.L.; Melezinek, I. J. Urol. 2000, 164, 1579.
|
[4] |
Tanetani Y.; Kaku K.; Kawai K.; Fujioka T.; Shimizu T. Pestic. Biochem. Physiol. 2009, 95, 47.
|
[5] |
Otzen T.; Wempe E.G.; Kunz B.; Bartels R.; Lehwark-Yvetot G.; Hansel W.; K. Schaper, J.; Seydel, J.K. J. Med. Chem. 2004, 47, 240.
|
[6] |
Simpkins N.S. Sulphones in Organic Synthesis, Pergamon Press, Oxford , 1993.
|
[7] |
Ramberg L.; B-cklund B. Ark. Kemi, Mineral Geol. 1940, 27, 1.
|
[8] |
Julia M.; Paris J.-M. Tetrahedron Lett. 1973, 14, 4833.
|
[9] |
For recent examples, see: (a) Yuan, Z.; Wang, H.-Y.; Mu, X. Chen, P.; Guo, Y.-L.; Liu, G.J. Am. Chem. Soc. 2015, 137, 2468.
|
(b) Tang X.; Huang L.; Xu Y.; Yang J.; Wu W.; Jiang H. Angew. Chem., Int. Ed. 2014, 53, 4205.
|
|
(c) Xi Y.; Dong B.; McClain E.J.; Wang Q.; Gregg T.L.; Akhmedov N.G.; Petersen J.L.; Shi X. Angew. Chem., Int. Ed. 2014, 53, 4657.
|
|
(d) Handa S.; Fennewald J.C.; Lipshutz B.H. Angew. Chem., Int. Ed. 201 4, 53, 3432.
|
|
(e) Lu Q.; Zhang J.; Zhao G.; Qi Y.; Wang H.; Lei A. J. Am. Chem. Soc. 2013, 135, 11481.
|
|
(f) Liu Q.; Zhang J.; Wei F.; Qi Y.; Wang H.; Liu Z.; Lei A. Angew. Chem., Int. Ed. 2013, 52, 7156.
|
|
(g) Yuan G.; Zheng J.; Gao X.; Li X.; Huang L.; Chen H.; Jiang H. Chem. Commun. 2012, 48, 7513.
|
|
(h) Wu X.-S.; Chen Y.; Li M.-B.; Zhou M.-G.; Tian S.-K. J. Am. Chem. Soc. 2012, 134, 14694.
|
|
[10] |
Zhao X.; Dimitrijević E.; Dong V.M. J. Am. Chem. Soc. 2009, 131, 3466.
|
[11] |
Liu N.-W.; Liang S.; Manolikakes G. Synthesis 201 6, 48, 1939.
|
For selected reviews on transition-metal-catalyzed C—H functionalization, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.Chem. Soc. Rev. 2009, 38, 3242.
|
|
(b) Chen X.; Engle K.M.; Wang D.-H.; Yu J.-Q. Angew Chem., Int. Ed. 2009, 48, 5094.
|
|
(c) Lyons T.W.; Sanford M.S. Chem. Rev. 2010, 110, 1147.
|
|
(d) Arockiam P.B.; Bruneau C.; Dixneuf P.H. Chem. Rev. 2012, 112, 5879.
|
|
(e) Ackermann L.C. Acc. Chem. Res. 2014, 47, 281.
|
|
(f) Pei P.; Zhang F.; Yi H.; Lei A. Acta Chim. Sinica 2017, 75, 15. (in Chinese)
|
|
( 裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.).
|
|
(g) Du J.-Y.; Xia C.-G.; Sun, W. Acta Chim. Sinica. 2018, 76, 329. (in Chinese)
|
|
( 杜俊毅, 夏春谷, 孙伟, 化学学报, 2018, 76, 329.).
|
|
(h) For selected reviews on Directing-Group see: Daugulis O.; Do H.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.
|
|
(i) Li D.-D.; He C.-L.; Cai H.-T.; Wang G.-W. Chin. J. Org. Chem. 2013, 33, 203. (in Chinese)
|
|
( 李丹丹, 何程林, 蔡海婷, 王官武, 有机化学, 2013, 33, 203.).
|
|
(j) Wang S.; Yan F.; Wang L.-S.; Zhu L. Chin. J. Org. Chem. 2018, 38, 291. (in Chinese)
|
|
( 汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.).
|
|
(k) Luo F. Chin. J. Org. Chem. 2019, 39, 3084. (in Chinese)
|
|
( 罗飞华, 有机化学, 2019, 39, 3084.).
|
|
For examples on Directing-Group, see:.
|
|
(e) Zhang Q.; Yin X.-S.; Zhao S.; Fang S.-L.; Shi B.-F. Chem. Commun. 2014, 50, 8353.
|
|
(l) Yang Q.-L.; Wang X.-Y.; Wang T.-L.; Yang X.; Liu D.; Tong X.; Wu X.-Y.; Mei T.-S. Org. Lett. 2019, 21, 2645.
|
|
(m) Yang Q.-L.; Wang X.-Y.; Weng X.-J.; Yang X.; Xu X.-T.; Tong X.; Fang P.; Wu X.-Y.; Mei T.-S. Acta Chim. Sinica 2019, 77, 866. (in Chinese)
|
|
( 杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.).
|
|
[12] |
For selected reviews on metals-catalyzed formation of C-S, see: (a) Liang, S.; Shaaban, S.; Liu, N.-W.; Hofman, K. Adv. Organomet. Chem. 2018, 69, 135.
|
For examples on metal-catalyzed formation of C—S, see:.
|
|
(b) Chen X.; Hao X.-S.; Goodhue C.E.; Yu J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
|
|
(c) Liu S.-L.; Li X.-H.; Zhang S.-S.; Hou S.-K.; Yang G.-C.; Gong, J-F.; Song, M.-P.Adv. Synth. Catal. 2017, 359, 2241.
|
|
(d) Liu C.; Fang Y.; Wang S.-Y.; Ji S.-J. ACS Catal. 2019, 9, 8910.
|
|
(e) Wang X.; Yi X.; Xu H.; Dai H.-X. Org. Lett. 2019, 21, 5981.
|
|
(f) Chen J.; Chen S.; Xu X.; Tang Z.; Au C.-T.; Qiu R. J. Org. Chem. 2016, 81, 3246.
|
|
(g) Liu D.; Ma H.-X.; Fang P.; Mei T.-S. Angew. Chem., Int. Ed. 2019, 58, 5033.
|
|
(h) Meng Y.; Wang M.; Jiang X. Angew. Chem., Int. Ed. 2020, 59, 134.
|
|
[13] |
Zhao X.; Dimitrijević E.; Dong V.M. J. Am. Chem. Soc. 2009, 131, 3466.
|
[14] |
For selected reviews on copper-catalyzed/mediated C—H sulfonylation see: (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
|
(b) Campbell A.N.; Stahl S.S. Acc. Chem. Res. 2012, 45, 851.
|
|
(c) Zhang C.; Tang C.; Jiao N. Chem. Soc. Rev. 2012, 41, 3464.
|
|
(d) Wendlandt A.E.; Suess A.M.; Stahl S.S. Angew. Chem., Int. Ed. 2011, 50, 11062.
|
|
(e) Daugulis O.; Do H.-Q.; Shabashov D. Acc. Chem. Res. 2009, 42, 1074.
|
|
For examples on copper-catalyzed/mediated C( sp2 )—H sulfonylation, see:.
|
|
(g) Uemura T.; Imoto S.; Chatani N. Chem. Lett. 2006, 35, 842.
|
|
(h) Peng J.; Chen M.; Xie Z.; Luo S.; Zhu Q. Org. Chem. Front. 2014, 1, 777.
|
|
(i) Peng J.; Xie Z.; Chen M.; Wang J.; Zhu Q. Org. Lett. 20 14, 16, 4702.
|
|
(j) Hao X.-Q.; Chen L.-J.; Ren B.; Li L.-Y.; Yang X.-Y.; Gong J.-F.; Niu J.-L.; Song M.-P. Org. Lett. 2014, 16, 1104.
|
|
(k) Guo Y.; Liu Z.; Zhu M.; Li L.; Li J.; Zou D.; Wu Y.; Wu Y. Chin. J. Org. Chem. 2020, 40, 724. (in Chinese)
|
|
( 郭圆圆, 刘振伟, 朱明祥, 李琳琳, 李敬亚, 邹大鹏, 吴豫生, 吴养洁, 有机化学, 2020, 40, 724).
|
|
(l) Fan C.-L.; Zhang L.-B.; Liu J.; Hao X.-Q.; Niu J.-L.; Song M.-P. Org. Chem. Front. 2019, 6, 2215.
|
|
For selected reviews on other metals-catalyzed/mediated sulfonylation, see:.(m) Liu J.; Zheng L. Adv. Synth. Catal. 2019, 361, 1710.
|
|
(n) Shaaban S.; Liang S.; Liu N.-W.; Manolikakes G. Org. Biomol. Chem. 2017, 15, 1947.
|
|
For examples on other metals-catalyzed/mediated sulfonylation,see: (o) Karmakar U.; Samanta. R.J. Org. Chem. 2019, 84, 2850.
|
|
(p) Kramer P.; Krieg S.-C.; Kelm H. Org. Biomol. Chem. 2019, 17, 5538.
|
|
[15] |
(a) Liang S.; Liu N.-W.; Manolikakes G. Adv. Synth. Catal. 2016, 358, 159.
|
(b) Liu J.; Yu L.; Zhuang S.; Gui Q.; Chen X.; Wang W.; Tan Z. Chem. Commun. 2015, 51, 6418.
|
|
(c) Rao W.-H.; Shi B.-F. Org. Lett. 2015, 17, 2784.
|
|
(d) Liu S.-L.; Li X.-H.; Zhang S.-S.; Hou S.-K.; Yang G.-C.; Gong J.-F.; Song M.-P. Adv. Synth. Catal. 2017, 359, 2241.
|
|
(e) Rao W.-H.; Zhan B.-B.; Chen K.; Ling P.-X.; Zhang Z.-Z.; Shi B.-F. Org. Lett. 2015, 17, 3552.
|
|
(f) Wu Z.; Song H.; Cui X.; Pi C.; Du W.; Wu Y. Org. Lett. 2013, 15, 1270.
|
|
(g) Yokota A.; Chatani N. Chem. Lett. 2015, 44, 902.
|
|
(h) Reddy V.P.; Qiu R.; Iwasaki T.; Kambe N. Org. Biomol. Chem. 2015, 13, 6803.
|
|
(i) Xia H.; An Y.; Zeng X.; Wu J. Chem. Commun. 2017, 53, 12548.
|
|
[16] |
(a) Liang H.-W.; Jiang K.; Ding W.; Yuan Y.; Shuai L.; Chen Y.-C.; Wei Y. Chem. Commun. 2015, 51, 16928.
|
(b) Qiao H.; Sun S.; Yang F.; Zhu Y.; Zhu W.; Dong Y.; Wu Y.; Kong X.; Jiang L.; Wu Y. Org. Lett. 2015, 17, 6086.
|
|
(c) Wei J.; Jiang J.; Xiao X.; Lin D.; Deng Y.; Ke Z.; Jiang H.; Zeng W. J. Org. Chem. 2016, 81, 946.
|
|
(d) Xu J.; Shen C.; Zhu X.; Zhang P.; Ajitha M.J.; Huang K.-W.; An Z.; Liu X. Chem. -Asian J. 2016, 11, 882.
|
|
(e) Li J.-M.; Weng J.; Lu G.; Chan A.S.C. Tetrahedron Lett. 2016, 57, 2121.
|
|
(f) Liang S.; Manolikakes G. Adv. Synth. Catal. 2016, 358, 2371.
|
|
(g) Li J.-M.; Wang Y.-H.; Yu Y.; Wu R.-B.; Weng J.; Lu G.. ACS Catal. 2017, 7, 2661.
|
|
(h) Xia C.; Wang K.; Xu J.; Wei Z.; Shen C.; Duan G.; Zhu Q.; Zhang P. RSC Adv. 2016, 6, 37173.
|
|
(i) Liang S.; Bolte M.; Manolikakes G. Chem. -Eur. J. 2017, 23, 96.
|
|
(j) Bai P.; Sun S.; Li Z.; Qiao H.; Su X.; Yang F.; Wu Y.; Wu Y. J. Org. Chem. 2017, 82, 12119.
|
|
(k) Chen G.; Zhang X.; Zeng Z.; Peng W.; Liang Q.; Liu J. ChemistrySelect 2017, 2, 1979.
|
|
(l) Wang K.; Wang G.; Duan G.; Xia C. RSC Adv. 2017, 7, 51313.
|
|
(m) Xia H.; An Y.; Zeng X.; Wu J. Org. Chem. Front. 2018, 5, 366.
|
|
[17] |
(a) Raziullah.; Kumar, M.; Kant, R.; Koley, D. Adv. Synth. Catal. 2019, 361, 1.
|
(b) Gandeepan P.; Koeller J.; Ackermann L. ACS Catal. 2017, 7, 1030.
|
|
(c) Ahmad A.; Dutta H.S.; Khan B.; Kant R.; Koley D. Adv. Synth. Catal. 2018, 360, 1644.
|
|
(d) Xu H.; Qiao X.; Yang S.; Shen Z. J. Org. Chem. 2014, 79, 4414.
|
|
(e) Guo X.X.; Gu D.W.; Wu Z.X.; Zhang W.B. Chem. Rev. 2015, 115, 1622.
|
|
(f) Huffman L.M.; Stahl S.S. J. Am. Chem. Soc. 2008, 130, 9196.
|
|
(g) King A.E.; Huffman L.M.; Casitas A.; Costas M.; Ribas X.; Stahl S.S. J. Am. Chem. Soc. 2010, 132, 12068.
|
|
(h) Yao B.; Wang Z.-L.; Zhang H.; Wang D.-X.; Zhao L.; Wang M.-X. J. Org. Chem. 2012, 77, 3336.
|
|
(i) Yao B.; Wang D.-X.; Huang Z.-T.; Wang M.-X. Chem. Commun. 2009, 2899.
|
|
[18] |
Holmes C.W.N.; Loudon J.D. J. Chem. Soc. 1940, 1521.
|
[1] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[2] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[3] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[4] | 李春生, 连晓琪, 陈莲芬. 铜催化亚砜叶立德与邻苯二胺[4+2]环加成反应[J]. 有机化学, 2023, 43(4): 1492-1498. |
[5] | 刘洋, 黄翔, 王敏, 廖建. 铜催化环酮亚胺与β,γ-不饱和N-酰基吡唑不对称Mannich-Type反应[J]. 有机化学, 2023, 43(4): 1499-1509. |
[6] | 刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101. |
[7] | 韩彪, 李维双, 陈舒晗, 张泽浪, 赵雪, 张瑶瑶, 朱磊. 铜催化不饱和化合物硅加成反应的研究进展[J]. 有机化学, 2023, 43(2): 555-572. |
[8] | 吴宇恒, 颜岩, 寮渭巍. 双功能二氧化硫替代物在合成磺酰类化合物中的研究进展[J]. 有机化学, 2023, 43(11): 3713-3727. |
[9] | 许力, 吕兰兰, 王香善. 铜催化烯醇硅醚与芳基亚磺酸钠合成β-酮砜的研究[J]. 有机化学, 2023, 43(10): 3644-3651. |
[10] | 陈志远, 杨梦维, 徐建林, 徐允河. 铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物[J]. 有机化学, 2023, 43(10): 3598-3607. |
[11] | 魏琬絜, 詹磊, 高雷, 黄国保, 马献力. 电化学合成C-磺酰基化合物的研究进展[J]. 有机化学, 2023, 43(1): 17-35. |
[12] | 危斌, 周子龙, 秦景灏, 严泽宇, 郭嘉程, 雷澍, 谢叶香, 欧阳旋慧, 宋仁杰. 氧杂蒽与亚磺酸钠的电化学氧化C(sp3)—H磺酰化反应[J]. 有机化学, 2023, 43(1): 186-194. |
[13] | 王川川, 马志伟, 侯学会, 杨龙华, 陈亚静. N-Ts氰胺在有机合成中的研究与应用[J]. 有机化学, 2023, 43(1): 74-93. |
[14] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[15] | 徐琳琳, 兰美君, 张慕雨, 张永琪, 冯宇豪, 荣良策, 张金鹏. 芳基乙烯β-H区域选择性三氟甲基磺酰化反应[J]. 有机化学, 2022, 42(7): 2134-2139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||