有机化学 ›› 2021, Vol. 41 ›› Issue (1): 333-340.DOI: 10.6023/cjoc202006031 上一篇 下一篇
研究论文
付拯江a,b,*(), 郝广果a, 石泉清a, 周金琪a, 姜李高a, 汪水亮a, 郭生梅a, 蔡琥a,*()
收稿日期:
2020-06-17
修回日期:
2020-07-27
发布日期:
2020-08-27
通讯作者:
付拯江, 蔡琥
作者简介:
基金资助:
Zhengjiang Fua,b,*(), Guangguo Haoa, Quanqing Shi,a, Jinqi Zhoua, Ligao Jianga, Shuiliang Wanga, Shengmei Guoa, Hu Caia,*()
Received:
2020-06-17
Revised:
2020-07-27
Published:
2020-08-27
Contact:
Zhengjiang Fu, Hu Cai
Supported by:
文章分享
有氧条件下以NH4OAc/ N, N-二甲基甲酰胺(DMF)组合为氰源, 发展了Ag/Cu介导芳基羧酸脱羧的氰化反应, 并进一步实现了以该方法为关键步骤的吡仑帕奈(perampanel)合成. 初步的机理研究表明, 产物中的“CN”来源于NH4 +/ DMF组合, 催化体系中的Cu决定着反应的发生, Ag有利于反应的转化.
付拯江, 郝广果, 石泉清, 周金琪, 姜李高, 汪水亮, 郭生梅, 蔡琥. 以NH4 +/ N, N-二甲基甲酰胺组合为氰源Ag/Cu介导芳基羧酸的脱羧氰化反应[J]. 有机化学, 2021, 41(1): 333-340.
Zhengjiang Fu, Guangguo Hao, Quanqing Shi,, Jinqi Zhou, Ligao Jiang, Shuiliang Wang, Shengmei Guo, Hu Cai. Ag/Cu-Mediated Decarboxylative Cyanation of Arene Carboxylic Acids Using NH4 +/N,N-Dimethylformamide as Combined Cyanide Source[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 333-340.
Entry | [Ag] (equiv.) | [Cu] (equiv.) | “N” (equiv.) | Additive (equiv.) | Yield b /% |
---|---|---|---|---|---|
1 | Ag 2SO 4 (0.1) | Cu(OAc) 2 (1) | Ethylenediamine (1.5) | — | 40 |
2 | Ag 2SO 4(0.1) | Cu(OAc) 2 (1) | NH 4OAc (3) | — | 43 |
3 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1) | NH 4OAc (3) | — | 46 |
4 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1) | NH 4OAc (3) | EtCOOH (2) | 55 |
5 | Ag 2SO 4 (0.05) | Cu(OAc) 2(1) | NH 4OAc (3) | MeCOOH (2) | 52 |
6 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 79 |
7 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | PhCOOH (2) | 63 |
8 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | t BuCOOH (2) | 40 |
9 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | AdCOOH (2) | 61 |
10 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 3•H 2O (3) | EtCOOH (2) | 55 |
11 | Ag 2SO 4 (0.05) | Cu(TFA) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 40 |
12 | Ag 2SO 4 (0.05) | CuI (1.6) | NH 4OAc (3) | EtCOOH (2) | 36 |
13 | Ag 2O (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 42 |
14 | Ag 2CO 3 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 54 |
15 | AgOTf (0.1) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 51 |
16 c | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 43 |
17 d | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 10 |
18 e | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 38 |
Entry | [Ag] (equiv.) | [Cu] (equiv.) | “N” (equiv.) | Additive (equiv.) | Yield b /% |
---|---|---|---|---|---|
1 | Ag 2SO 4 (0.1) | Cu(OAc) 2 (1) | Ethylenediamine (1.5) | — | 40 |
2 | Ag 2SO 4(0.1) | Cu(OAc) 2 (1) | NH 4OAc (3) | — | 43 |
3 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1) | NH 4OAc (3) | — | 46 |
4 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1) | NH 4OAc (3) | EtCOOH (2) | 55 |
5 | Ag 2SO 4 (0.05) | Cu(OAc) 2(1) | NH 4OAc (3) | MeCOOH (2) | 52 |
6 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 79 |
7 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | PhCOOH (2) | 63 |
8 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | t BuCOOH (2) | 40 |
9 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | AdCOOH (2) | 61 |
10 | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 3•H 2O (3) | EtCOOH (2) | 55 |
11 | Ag 2SO 4 (0.05) | Cu(TFA) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 40 |
12 | Ag 2SO 4 (0.05) | CuI (1.6) | NH 4OAc (3) | EtCOOH (2) | 36 |
13 | Ag 2O (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 42 |
14 | Ag 2CO 3 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 54 |
15 | AgOTf (0.1) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 51 |
16 c | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 43 |
17 d | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 10 |
18 e | Ag 2SO 4 (0.05) | Cu(OAc) 2 (1.6) | NH 4OAc (3) | EtCOOH (2) | 38 |
Entry | Change of standard conditions | Isolated yield/% |
---|---|---|
1 | None [Entry 6, | 79 |
2 | No Ag/Cu | 0 |
3 | No Ag | 31 |
4 | No Cu | 0 |
5 | 3 equiv. 15NH 4OAc [instead of NH 4OAc] | 75 |
6 | NH 4I [instead of NH 4OAc] | 43 |
7 | CuI [instead of Cu(OAc) 2] | 36 |
8 | Absence of EtCOOH | 56 |
9 | Formamide HCONH 2 [instead of DMF] | 0 |
10 | N, N-Diethylformamide HCONEt 2 [instead of DMF] | 28 |
11 | 2 equiv. TEMPO was added as a radical scavenger | 15 |
12 | 2 equiv. BHT was added as a radical scavenger | 12 |
Entry | Change of standard conditions | Isolated yield/% |
---|---|---|
1 | None [Entry 6, | 79 |
2 | No Ag/Cu | 0 |
3 | No Ag | 31 |
4 | No Cu | 0 |
5 | 3 equiv. 15NH 4OAc [instead of NH 4OAc] | 75 |
6 | NH 4I [instead of NH 4OAc] | 43 |
7 | CuI [instead of Cu(OAc) 2] | 36 |
8 | Absence of EtCOOH | 56 |
9 | Formamide HCONH 2 [instead of DMF] | 0 |
10 | N, N-Diethylformamide HCONEt 2 [instead of DMF] | 28 |
11 | 2 equiv. TEMPO was added as a radical scavenger | 15 |
12 | 2 equiv. BHT was added as a radical scavenger | 12 |
[1] |
(a) Zhang Y.-F. ; Shi Z.-J. Acc. Chem. Res. 2019, 52, 161.
|
(b) Petrone D.A. ; Ye J. ; Lautens M. Chem. Rev. 2016, 116, 8003.
|
|
(c) Yan G. ; Wu X. ; Yang M. Org. Biomol. Chem. 2013, 11, 5558.
|
|
(d) Kumar R. ; Eycken E.V.V. Chem. Soc. Rev. 2013, 42, 1121.
|
|
(e) Song L.-R. ; Fana Z. ; Zhang A. Org. Biomol. Chem. 2019, 17, 1351.
|
|
(f) Bariwalab J. ; Eycken E.V. Chem. Soc. Rev. 2013, 42, 9283.
|
|
[2] |
(a) Zhou M. ; Qin P. ; Jing L. ; Sun J. ; Du H. Chin. J. Org. Chem. 2020, 40, 598. (in Chinese)
|
( 周明东, 覃丕涛, 经理珂, 孙京, 杜海武, 有机化学, 2020, 40, 598.).
|
|
(b) Yin X. ; Li W. ; Zhao B. ; Cheng K. Chin. J. Org. Chem. 2018, 38, 2879. (in Chinese)
|
|
( 殷晓婷, 李文炅, 赵保丽, 程凯, 有机化学, 2018, 38, 2879.).
|
|
(c) Dai J. ; Wang G. ; Xu X. ; Xu H. Chin. J. Org. Chem. 2013, 33, 2460. (in Chinese)
|
|
( 戴建军, 王光祖, 徐小岚, 许华建, 有机化学, 2013, 33, 2460.).
|
|
(d) Perry G.J.P. ; Larrosa I. Eur. J. Org. Chem. 2017, 3517.
|
|
(e) Wei Y. ; Hu P. ; Zhang M. ; Su W. Chem. Rev. 2017, 117, 8864.
|
|
(f) Dzik W.I. ; Lange P.P. ; Gooßen L.J. Chem. Sci. 2012, 3, 2671.
|
|
(g) Fu Z. ; Li Z. ; Xiong Q. ; Cai H. Chin. J. Org. Chem. 2015, 35, 984. (in Chinese)
|
|
( 付拯江, 李兆杰, 熊起恒, 蔡琥, 有机化学, 2015, 35, 984.).
|
|
[3] |
(a) Bouazzaoui O. ; Rousée K. ; Mulengi J.K. ; Pannecoucke X. ; Bouillon J.-P. ; Couve-Bonnaire S. Eur. J. Org. Chem. 201 8, 3705.
|
(b) Koy M. ; Sandfort F. ; Tlahuext-Aca A. ; Quach L. ; Daniliuc C.G. ; Glorius F. Chem.-Eur. J. 2018, 24, 1.
|
|
(c) Edwards J.T. ; Merchant R.R. ; McClymont K.S. ; Knouse K.W. ; Qin T. ; Malins L.R. ; Vokits B. ; Shaw S.A. ; Bao D.-H. ; Wei F.-L. ; Zhou T. ; Eastgate M.D. ; Baran P.S. Nature 2017, 545, 213.
|
|
(d) Zou J.P. ; Wu D.D. ; Luo J. ; Xing Q.J. ; Luo X.B. ; Dong W.H. ; Luo S.L. ; Du H.M. ; Suib S.L. ACS Catal. 2016, 6, 6861.
|
|
(e) Fu Z. ; Huang S. ; Su W. ; Hong M. Org. Lett. 2010, 12, 4992.
|
|
(f) Fu Z. ; Huang S. ; Kan J. ; Su W. ; Hong M. Dalton Trans. 2010, 39, 11317.
|
|
[4] |
(a) Liu X. ; Wang Z. ; Cheng X. ; Li C. J. Am. Chem. Soc. 2012, 134, 14330.
|
(b) Huang L. ; Olivares A.M. ; Weix D.J. Angew. Chem., Int. Ed . 2017, 56, 11901.
|
|
(c) Yu Y. ; Chen X. ; Wu Q. ; Liu D. ; Hu L. ; Yu L. ; Tan Z. ; Gui Q. ; Zhu G. J. Org. Chem. 2018, 83, 8556.
|
|
(d) Jiang Q. ; Li H. ; Zhang X. ; Xu B. ; Su W. Org. Lett. 2018, 20, 2424.
|
|
(e) Hossian A. ; Manna K. ; Das P. ; Jana R. ChemistrySelect 2018, 3, 4315.
|
|
[5] |
(a) Marcote D.C. ; Dauncey R.E. ; Douglas J.J. ; Ruffoni A. ; Leonori D. Org. Biomol. Chem. 2019, 17, 1839.
|
(b) Zhu Y. ; Li X. ; Wang X. ; Huang X. ; Shen T. ; Zhang Y. ; Sun X. ; Zou M. ; Song S. ; Jiao N. Org. Lett. 2015, 17, 4702.
|
|
(c) Liu C. ; Wang X. ; Li Z. ; Cui L. ; Li C. J. Am. Chem. Soc. 2015, 137, 9820.
|
|
(d) Wang Y. ; Liu R. ; Gao J. ; Jia Y. Chin. J. Org. Chem. 2017, 37, 691. (in Chinese)
|
|
( 王永刚, 刘人荣, 高建荣, 贾义霞, 有机化学, 2017, 37, 691.).
|
|
[6] |
(a) Yue H. ; Guo L. ; Liao H.-H. ; Cai Y. ; Zhu C. ; Rueping M. Angew. Chem., Int. Ed. 2017, 56, 1.
|
(b) Xu X.-L. ; Xu W.-T. ; Wu J.-W. ; He J.-B. ; Xu H.-J. Org. Biomol. Chem. 2016, 14, 9970.
|
|
(c) Kiyokawa K. ; Watanabe T. ; Fra L. ; Kojima T. ; Minakata S. J. Org. Chem. 2017, 82, 11711.
|
|
(d) Shen L. ; Zhang J. ; Xie J. Chin. J. Org. Chem. 2019, 39, 1153. (in Chinese)
|
|
( 沈丽, 张洁, 谢建伟, 有机化学, 2019, 39, 1153.).
|
|
[7] |
(a) Goossen L.J. ; Deng G. ; Levy L.M. Science 2006, 313, 662.
|
(b) Goossen L.J. ; Rodríguez N. ; Melzer B. ; Linder C. ; Deng G. ; Levy L.M. J. Am. Chem. Soc. 2007, 129, 4824.
|
|
(c) Tang J. ; Biafora A. ; Goossen L.J. Angew. Chem., Int. Ed. 2015, 54, 13130.
|
|
(d) Wang C. ; Piel I. ; Glorius F. J. Am. Chem. Soc. 2009, 131, 4194.
|
|
(e) Zhang F. ; Greaney M.F. Angew. Chem., Int. Ed. 2010, 49, 2768.
|
|
(f) Fang P. ; Li M. ; Ge H. J. Am. Chem. Soc. 2010, 132, 11898.
|
|
(g) Shang R. ; Ji D.-S. ; Chu L. ; Fu Y. ; Liu L. Angew. Chem., Int. Ed. 2011, 50, 4470.
|
|
(h) Dong W.H. ; Wu D.D. ; Luo J.M. ; Xing Q.J. ; Liu H. ; Zou J.P. ; Luo X.B. ; Min X.B. ; Liu H.L. ; Luo S.L. ; Au C.T. J. Catal. 2017, 349, 218.
|
|
(i) Pan F. ; Lei Z.-Q. ; Wang H. ; Li H. ; Sun J. ; Shi Z.-J. Angew. Chem., Int. Ed. 2013, 52, 2063.
|
|
(j) Kan J. ; Huang S. ; Lin J. ; Zhang M. ; Su W. Angew. Chem., Int. Ed. 2015, 54, 2199.
|
|
[8] |
(a) Quibell J.M. ; Perry G.J.P. ; Cannas D.M. ; Larrosa I. Chem. Sci. 2018, 9, 3860.
|
(b) Tan X. ; Song T. ; Wang Z. ; Chen H. ; Cui L. ; Li C. Org. Lett. 2017, 19, 1634.
|
|
(c) Wang Z. ; Zhu L. ; Yin F. ; Su Z. ; Li Z. ; Li C. J. Am. Chem. Soc. 2012, 134, 4258.
|
|
(d) Perry G.J.P. ; Quibell J.M. ; Panigrahi A. ; Larrosa I. J. Am. Chem. Soc. 2017, 139, 11527.
|
|
(e) Song X.R. ; Li R. ; Ding H. ; Yang R. ; Xiao Q. ; Liang Y.M. Tetrahedron Lett. 2016, 57, 4519.
|
|
(f) Li Z. ; Wang K. ; Liu Z.-Q. Synlett 2014, 25, 2508.
|
|
(g) Kulbitski K. ; Nisnevich G. ; Gandelman M. Adv. Synth. Catal. 2011, 353, 1438.
|
|
(h) Wang D. ; Yuan Z. ; Liu Q. ; Chen P. ; Liu G. Chin. J. Chem. 2018, 36, 507.
|
|
[9] |
(a) Tan X. ; Liu Z. ; Shen H. ; Zhang P. ; Zhang Z. ; Li C. J. Am. Chem. Soc. 2017, 139, 12430.
|
(b) Li Z. ; Cui Z. ; Liu Z.-Q. Org. Lett. 2013, 15, 406.
|
|
(c) Xu P. ; Abdukader A. ; Hu K. ; Cheng Y. ; Zhu C. Chem. Commun. 2014, 50, 2308.
|
|
(d) He Z. ; Zhang R. ; Hu M. ; Li L. ; Ni C. ; Hu J. Chem. Sci. 2013, 4, 3478.
|
|
(e) Hu F. ; Shao X. ; Zhu D. ; Lu L. ; Shen Q. Angew. Chem., Int. Ed. 2014, 53, 6105.
|
|
(f) Pan S. ; Huang Y. ; Qing F.-L. Chem.-Asian J. 2016, 11, 2854.
|
|
(h) Li M. ; Petersen J.L. ; Hoover J.M. Org. Lett. 2017, 19, 638.
|
|
[10] |
(a) Candish L. ; Teders M. ; Glorius F. J. Am. Chem. Soc. 2017, 139, 7440.
|
(b) Jiang Y. ; Pan S. ; Zhang Y. ; Yu J. ; Liu H. Eur. J. Org. Chem. 2014, 2027.
|
|
(c) Li R. ; Chen X. ; Song X.R. ; Ding H. ; Wang P. ; Xiao Q. ; Liang Y.M. Adv. Synth. Catal. 2017, 359, 3962.
|
|
(d) Manna S. ; Jana S. ; Saboo T. ; Maji A. ; Maiti D. Chem. Commun. 2013, 49, 5286.
|
|
(e) Wang J. ; Li H. ; Leng T. ; Liu M. ; Ding J. ; Huang X. ; Wu H. ; Gao W. ; Wu G. Org. Biomol. Chem. 2017, 15, 9718.
|
|
(f) Qiao H. ; Sun S. ; Kang J. ; Yang F. ; Wu Y. ; Wu Y. Chin. J. Org. Chem. 2018, 38, 86. (in Chinese)
|
|
( 乔辉杰, 孙素颜, 康建勋, 杨帆, 吴豫生, 吴养洁, 有机化学, 2018, 38, 86.).
|
|
[11] |
Fu Z. ; Jiang Y. ; Wang S. ; Song Y. ; Guo S. ; Cai H. Org. Lett. 2019, 21, 3003.
|
[12] |
Wang S. ; Fu Z. ; Huang Z. ; Jiang Y. ; Guo S. ; Cai H. Chin. Chem. Lett. 2019, 30, 1173.
|
[13] |
Fu Z. ; Li Z. ; Xiong Q. ; Cai H. Eur. J. Org. Chem. 2014, 7798.
|
[14] |
Fu Z. ; Li Z. ; Xiong Q. ; Cai H. RSC Adv. 2015, 5, 52101.
|
[15] |
Li Z. ; Fu Z. ; Zhang H. ; Long J. ; Song Y. ; Cai H. New J. Chem. 2016, 40, 3014.
|
[16] |
(a) Fu Z. ; Li Z. ; Song Y. ; Yang R. ; Liu Y. ; Cai H. J. Org. Chem. 2016, 81, 2794.
|
(b) Fu Z. ; Jiang L. ; Zuo Q. ; Li Z. ; Liu Y. ; Wei Z. ; Cai H. Org. Biomol. Chem. 2018, 16, 5416.
|
|
(c) Fu Z. ; Jiang Y. ; Jiang L. ; Li Z. ; Guo S. ; Cai H. Tetrahedron Lett. 2018, 59, 4458.
|
|
(d) Fu Z. ; Jiang L. ; Li Z. ; Jiang Y. ; Cai H. Synth.Commun. 2019, 49, 917.
|
|
(e) Fu Z. ; Cao X. ; Wang S. ; Guo S. ; Cai H. Org. Biomol. Chem. 2020, 18, 8381.
|
|
[17] |
(a) Yan G. ; Zhang Y. ; Wang J. Adv. Synth. Catal. 2017, 359, 4068.
|
(b) Wen Q. ; Jin J. ; Zhang L. ; Luo Y. ; Lu P. ; Wang Y. Tetrahedron Lett. 2014, 55, 1271.
|
|
[18] |
(a) Galli C. Chem. Rev. 1988, 88, 765.
|
(b) Lindley J. Tetrahedron 1984, 40, 1433.
|
|
[19] |
(a) Ma L. ; Placzek M.S. ; Hooker J.M. ; Vasdev N. ; Liang S.H. Chem. Commun. 2017, 53, 6597.
|
(b) Shi S. ; Szostak M. Org. Lett. 2017, 19, 3095.
|
|
(c) Bag S. ; Jayarajan R. ; Dutta U. ; Chowdhury R. ; Mondal R. ; Maiti D. Angew. Chem., Int. Ed. 2017, 56, 12538.
|
|
[20] |
(a) Kou X. ; Fan J. ; Tong X. ; Shen Z. Chin. J. Org. Chem. 2013, 33, 1407. (in Chinese)
|
( 寇学振, 范佳骏, 童晓峰, 沈增明, 有机化学, 2013, 33, 1407.).
|
|
(b) Zhang W. ; Hu C. ; Zhou X. Chin. J. Org. Chem. 2017, 37, 1246. (in Chinese)
|
|
( 张伟, 胡晨旭, 周向葛, 有机化学, 2017, 37, 1246.).
|
|
(c) Kou X. ; Zhao M. ; Qiao X. ; Zhu Y. ; Tong X. ; Shen Z. Chem. -Eur. J. 2013, 19, 16880.
|
|
(d) Pawar A.B. ; Chang S. Org. Lett. 2015, 17, 660.
|
|
(e) Malapit C.A. ; Reeves J.T. ; Busacca C.A. ; Howell A.R. ; Senanayake C.H. Angew. Chem., Int. Ed. 2016, 55, 326.
|
|
(f) Li X. ; Golz C. ; Alcarazo M. Angew. Chem., Int. Ed. 2019, 58, 9496.
|
|
(g) Chaitanya M. ; Anbarasan P. Org. Biomol. Chem. 2018, 16, 7084.
|
|
[21] |
(a) Chen X. ; Hao X.-S. ; Goodhue C.E. ; Yu J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
|
(b) Ding S. ; Jiao N. J. Am. Chem. Soc. 2011, 133, 12374.
|
|
(c) Xu H. ; Liu P.-T. ; Li Y.-H. ; Han F.-S. Org. Lett. 2013, 15, 3354.
|
|
[22] |
(a) Kim J. ; Chang S. J. Am. Chem. Soc. 2010, 132, 10272.
|
(b) Kim J. ; Choi J. ; Shin K. ; Chang S. J. Am. Chem. Soc. 2012, 134, 2528.
|
|
(c) Xu S. ; Teng J. ; Yu J.-T. ; Sun S. ; Cheng J. Org. Lett. 2019, 21, 9919.
|
|
(d) Zhang G. ; Ren X. ; Chen J. ; Hu M. ; Cheng J. Org. Lett. 2011, 13, 5004.
|
|
(e) Ren X. ; Chen J. ; Chen F. ; Cheng J. Chem. Commun. 2011, 47, 6725.
|
|
[23] |
Grainger R. ; Cornella J. ; Blakemore D.C. ; Larrosa I. ; Campanera J.M. Chem.-Eur. J. 2014, 20, 16680.
|
[24] |
McElhinny C.J. , Jr; Carroll, F.I.; Lewin, A.H. Synthesis 2012, 44, 57.
|
[25] |
Chong D.J. ; Lerman A.M. Curr. Neurol. Neurosci. Rep. 2016, 16, 39.
|
[26] |
Lu H.-T. ; Geng Z.-Y. ; Zou D.-P. ; Wu Y.-S. ; Wu Y.-J. Org. Lett. 2016, 18, 2774.
|
[27] |
Baur A. ; Bustin K.A. ; Auilera E. ; Petersen J.L. ; Hoover J.M. Org. Chem. Front. 2017, 4, 519.
|
[28] |
(a) Li C.-J. Acc. Chem. Res. 2009, 42, 335.
|
(b) Shirakawa E. ; Uchiyama N. ; Hayashi T. J. Org. Chem. 2011, 76, 25.
|
|
(c) Zhang L. ; Lu P. ; Wang Y. Chem. Commun. 2015, 51, 2840.
|
|
[29] |
Chiba S. ; Zhang L. ; Lee J.-Y. J. Am. Chem. Soc. 2010, 132, 7266.
|
[30] |
Sánchez-Viesca F. ; Berros M. Heterocycles 2002, 57, 1869.
|
[31] |
Queiroz M.R.P. ; Calhelhaa R.C. ; Kirsch G. Tetrahedron 2007, 63, 13000.
|
[32] |
Manetsch R. ; Zheng L. ; Reymond M.T. ; Woggon W.-D. ; Reymond J.-L. Chem.-Eur. J. 2004, 10, 2487.
|
[33] |
Rezaei R. ; Mohammadi M.K. ; Rastin N. Chin. J. Chem. 2010, 28, 993.
|
[34] |
Hauptschein M. ; Nodiff E.A. ; Saggiomo A.J. J. Am. Chem. Soc. 1954, 76, 1051.
|
[35] |
Kreimeyer A. ; Laube B. ; Sturgess M. ; Goeldner M. ; Foucaud B. J. Med. Chem. 1999, 42, 4394.
|
[36] |
Miroslav P. ; Jiri J. ; Miroslav R. ; Josef P. ; Miroslav R. ; Jiri H. ; Emil S. ; Jirina M. Collect. Czech. Chem. Commun. 1986, 42, 4394.
|
[37] |
Candiani I. ; D’Arasmo G. ; Heidempergher F. ; Tomasi A. Org. Process Res. Dev. 2009, 13, 456.
|
[1] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[2] | 王熠, 张键, 刘飏子, 罗晓燕, 邓卫平. 钯催化不对称[3+4]环加成构建吲哚并环庚烷[J]. 有机化学, 2023, 43(8): 2864-2877. |
[3] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[4] | 王永玲, 张铁欣, 张栩铭, 孙晗扬, 冷津瑶, 李亚明. 可见光催化N-芳基乙醛酸亚胺脱羧烷基化合成非天然氨基酸衍生物[J]. 有机化学, 2023, 43(12): 4284-4293. |
[5] | 胡家榆, 祝志强, 谢宗波, 乐长高. 可见光诱导α-氨基酸衍生物脱羧偶联反应研究进展[J]. 有机化学, 2022, 42(4): 978-1001. |
[6] | 余卫国, 王灵娜, 俞晓聪, 罗书平. 荧光染料和镍协同催化的脱羧羰基化反应[J]. 有机化学, 2022, 42(4): 1216-1223. |
[7] | 朱玉溪, 肖婷, 夏冬, 杨文超. 氟烷基羧酸的脱羧氟烷基化反应研究进展[J]. 有机化学, 2022, 42(12): 4067-4077. |
[8] | 张孟琪, 南光明, 赵晓辉, 魏伟. 可见光介导喹喔啉-2(1H)-酮C3-H缩醛化反应[J]. 有机化学, 2022, 42(12): 4315-4322. |
[9] | 付拯江, 曹晰晗, 尹健, 苟振宇, 伊学政, 蔡琥. 基于“一石二鸟”策略的羧基无痕导向其邻位C—H键官能团化反应[J]. 有机化学, 2022, 42(1): 67-74. |
[10] | 李晓颖, 李培贺, 王峥, 付辉, 戴啟谱. 钯催化的芳酰氧基氨基甲酸酯的分子内脱羧烯丙基胺化反应[J]. 有机化学, 2021, 41(8): 3089-3096. |
[11] | 王凯凯, 陈绍维, 李亚军, 李达谅, 鲍红丽. 铁催化1,3-共轭烯烃的Heck型脱羧烷基化反应[J]. 有机化学, 2021, 41(7): 2707-2714. |
[12] | 周敦, 樊爱红, 李翔, 陈春霞, 孙鹏, 彭进松. 铜催化羧酸与芳氨基甲酰氯的脱羧交叉偶联[J]. 有机化学, 2021, 41(3): 1146-1152. |
[13] | 吴红谕, 于贤勇, 曹忠. α-酮酸、异腈和水的电化学三组分合成α-酮酰胺[J]. 有机化学, 2021, 41(12): 4712-4717. |
[14] | 何宇航, 杨慧, 高冬旭, 马嘉慧, 邵亚敏, 安光辉, 李光明. 可见光介导无金属的苯乙酸衍生物脱羧氘代[J]. 有机化学, 2021, 41(12): 4725-4731. |
[15] | 贺帅旗, 李昊聪, 陈晓岚, Igor B. Krylov, Alexander O. Terent'ev, 屈凌波, 於兵. N-羟基邻苯二甲酰亚胺酯在光催化烷基化反应中的研究进展[J]. 有机化学, 2021, 41(12): 4661-4689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||