有机化学 ›› 2021, Vol. 41 ›› Issue (6): 2155-2174.DOI: 10.6023/cjoc202011008 上一篇 下一篇
所属专题: 热点论文虚拟合集
综述与进展
收稿日期:
2020-11-05
修回日期:
2020-12-22
发布日期:
2021-02-22
通讯作者:
张扬会
基金资助:
Zechen Wua, Cang Chenga, Yanghui Zhanga,b()
Received:
2020-11-05
Revised:
2020-12-22
Published:
2021-02-22
Contact:
Yanghui Zhang
Supported by:
文章分享
一氧化碳是一种廉价的活性气体, 其反应原子经济性高并且可以有效地延长碳链, 因此CO是一种非常重要的碳源, 特别是在羰基化反应中. 羰基化反应是合成酸酐、酰胺及酯等含羰基化合物的最有效的方法之一. C—H键广泛存在于有机化合物中, 近几十年来, C—H键活化和官能团化的研究取得了很大的进展, C—H键与CO的反应也引起了人们的广泛关注. 主要综述了过去几十年间, 过渡金属, 如钯、钌、铑、钴和铜, 催化的碳氢键与一氧化碳反应的研究进展.
武泽臣, 程沧, 张扬会. 过渡金属催化的碳氢键与一氧化碳的反应[J]. 有机化学, 2021, 41(6): 2155-2174.
Zechen Wu, Cang Cheng, Yanghui Zhang. Transition Metal-Catalyzed Reactions of C—H Bonds with Carbon Monoxide[J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2155-2174.
[1] |
Chen, Y. T. Synthesis-Stuttgart 2016, 48,2483.
doi: 10.1055/s-0035-1562503 |
[2] |
Ji, F. H.; Li, X. W.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2014, 79,11246.
doi: 10.1021/jo502013s |
[3] |
Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124,11856.
pmid: 12358522 |
[4] |
Wang, C.; Zhang, L.; Chen, C. P.; Han, J.; Yao, Y. M.; Zhao, Y. S. Chem. Sci. 2015, 6,4610.
doi: 10.1039/C5SC00519A |
[5] |
Song, J.; Sun, H. S.; Sun, W.; Fan, Y. X.; Li, C.; Wang, H. T.; Xiao, K.; Qian, Y. Adv. Synth. Catal. 2019, 361,5521.
doi: 10.1002/adsc.v361.24 |
[6] |
Barsu, N.; Bolli, S. K.; Sundararaju, B. Chem. Sci. 2017, 8,2431.
doi: 10.1039/C6SC05026C |
[7] |
Yamashita, S.; Kurono, N.; Senboku, H.; Tokuda, M.; Orito, K. Eur. J. Org. Chem. 2009, 2009 1173.
|
[8] |
Zhang, Q.; Shi, B.-F. Chin. J. Chem. 2019, 37,647.
doi: 10.1002/cjoc.v37.7 |
[9] |
Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39,1522(in Chinese).
doi: 10.6023/cjoc201904030 |
( 张硕, 廖港, 史炳锋, 有机化学, 2019, 39,1522.)
doi: 10.6023/cjoc201904030 |
|
[10] |
Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78,289(in Chinese).
doi: 10.6023/A20020027 |
( 廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78,289.)
|
|
[11] |
Zhang, T.-Y.; Wei, X.-N.; Wang, H.-Y.; Liu, Z.-D.; Wei, G.-H. Guangzhou Chem. Ind. 2019, 47,20(in Chinese).
|
( 张亭妍, 委旭宁, 王宏雁, 刘钟栋, 魏国华, 广州化工, 2019, 47,20.)
|
|
[12] |
Wang, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2019, 77,690(in Chinese).
doi: 10.6023/A19060222 |
( 王强, 顾庆, 游书力, 化学学报, 2019, 77,690.)
|
|
[13] |
Huang, J.-P.; Gu, Q.; You, S.-L. Chin. J. Org. Chem. 2018, 38,51(in Chinese).
doi: 10.6023/cjoc201708030 |
( 黄家翩, 顾庆, 游书力, 有机化学, 2018, 38,51.)
doi: 10.6023/cjoc201708030 |
|
[14] |
Yi, Y.-K.; Chen, M.; Guan, Z.-H. Chin. Sci. Bull. 2015, 60,2927(in Chinese).
doi: 10.1360/N972015-00436 |
( 易育堃, 陈明, 关正辉, 科学通报, 2015, 60,2927.)
|
|
[15] |
Li, Y. H.; Hu, Y. Y.; Wu, X. F. Chem. Soc. Rev. 2018, 47,172.
doi: 10.1039/C7CS00529F |
[16] |
Fujiwara, Y.; Kawauchi, T.; Taniguchi, H. J. Chem. Soc., Chem. Commun. 1980,220.
|
[17] |
Itahara, T. Chem. Lett. 1982,1151.
|
[18] |
Itahara, T. Chem. Lett. 1983,127.
|
[19] |
Chiesa, A.; Ugo, R. J. Organomet. Chem. 1985, 279,215.
doi: 10.1016/0022-328X(85)87019-4 |
[20] |
Ugo, R.; Chiesa, A. J. Chem. Soc., 1987,2625.
|
[21] |
Taniguchi, Y.; Yamaoka, Y.; Nakata, K.; Takaki, K.; Fujiwara, Y. Chem. Lett. 1995,345.
|
[22] |
Ohashi, S.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2005,486.
|
[23] |
Liu, B.; Hu, F.; Shi, B. F. ACS Catal. 2015, 5,1863.
doi: 10.1021/acscatal.5b00050 |
[24] |
Ugo, R.; Chiesa, A.; Nardi, P.; Psaro, R. J. Mol. Catal. 1990, 59,23.
doi: 10.1016/0304-5102(90)85084-U |
[25] |
Zhang, H.; Liu, D.; Chen, C. Y.; Liu, C.; Lei, A. W. Chem.-Eur. J. 2011, 17,9581.
doi: 10.1002/chem.201101300 pmid: 21793064 |
[26] |
Zhang, H.; Shi, R. Y.; Gan, P.; Liu, C.; Ding, A. X.; Wang, Q. Y.; Lei, A. W. Angew. Chem., Int. Ed. 2012, 51,5204.
doi: 10.1002/anie.201201050 |
[27] |
Ozawa, F.; Yamagami, I.; Nakano, M.; Fujisawa, F.; Yamamoto, A. Chem. Lett. 1989,125.
|
[28] |
Liu, B.; Shi, B. F. Synlett 2013, 24,2274.
doi: 10.1055/s-00000083 |
[29] |
Wang, Z. C.; Li, Y. H.; Zhu, F. X.; Wu, X. F. Adv. Synth. Catal. 2016, 358,2855.
doi: 10.1002/adsc.201600395 |
[30] |
Liu, B.; Jiang, H. Z.; Shi, B. F. Org. Biomol. Chem. 2014, 12,2538.
doi: 10.1039/c4ob00084f |
[31] |
Liang, D. D.; He, Y. M.; Zhu, Q. Org. Lett. 2014, 16,2748.
doi: 10.1021/ol501070g |
[32] |
Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Calmuschi-Cula, B.; Bautista, D. Organometallics 2007, 26,2768.
doi: 10.1021/om070127y |
[33] |
Lopez, B.; Rodriguez, A.; Santos, D.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J. Chem. Commun. 2011, 47,1054.
doi: 10.1039/C0CC03478A |
[34] |
Liang, D. D.; Hu, Z. W.; Peng, J. L.; Huang, J. B.; Zhu, Q. Chem. Commun. 2013, 49,173.
doi: 10.1039/C2CC36817J |
[35] |
Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126,14342.
doi: 10.1021/ja045342+ |
[36] |
Guan, Z.-H.; Chen, M.; Ren, Z.-H. J. Am. Chem. Soc. 2012, 134,17490.
doi: 10.1021/ja308976x |
[37] |
Rajeshkumar, V.; Lee, T. H.; Chuang, S. C. Org. Lett. 2013, 15,1468.
doi: 10.1021/ol4001922 |
[38] |
Chen, M.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. J. Org. Chem. 2015, 80,1258.
doi: 10.1021/jo502581p |
[39] |
Zhang, X.; Dong, S.; Niu, X.; Li, Z.; Fan, X.; Zhang, G. Org. Lett. 2016, 18,4634.
doi: 10.1021/acs.orglett.6b02255 |
[40] |
Zhang, X. P.; Li, Z. W.; Ding, Q. Q.; Li, X. C.; Fan, X. S.; Zhang, G. S. Adv. Synth. Catal. 2019, 361,976.
doi: 10.1002/adsc.v361.5 |
[41] |
Cheng, X. F.; Wang, T.; Li, Y.; Wu, Y.; Sheng, J.; Wang, R.; Li, C.; Bian, K. J.; Wang, X. S. Org. Lett. 2018, 20,6530.
doi: 10.1021/acs.orglett.8b02856 |
[42] |
Li, Y.; Cheng, X.-F.; Fei, F.; Wu, T.-R.; Bian, K.-J.; Zhou, X.; Wang, X.-S. Chem. Commun. 2020, 56,11605.
doi: 10.1039/D0CC05219A |
[43] |
Ma, B.; Wang, Y.; Peng, J. L.; Zhu, Q. J. Org. Chem. 2011, 76,6362.
doi: 10.1021/jo2007362 |
[44] |
Shi, R. Y.; Liao, F.; Niu, H. Y.; Lei, A. W. Org. Chem. Front. 2018, 5,1957.
doi: 10.1039/C8QO00282G |
[45] |
Li, H.; Cai, G. X.; Shi, Z. J. Dalton. Trans. 2010, 39,10442.
doi: 10.1039/c0dt00451k |
[46] |
Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133,7222.
doi: 10.1021/ja201708f |
[47] |
Zhang, L.; Wang, C.; Han, J.; Huang, Z. B.; Zhao, Y. S. J. Org. Chem. 2016, 81,5256.
doi: 10.1021/acs.joc.6b00932 |
[48] |
Giri, R.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130,14082.
doi: 10.1021/ja8063827 |
[49] |
Giri, R.; Lam, J. K.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132,686.
doi: 10.1021/ja9077705 |
[50] |
Chen, M.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Angew. Chem., Int. Ed. 2013, 52,14196.
doi: 10.1002/anie.201307942 |
[51] |
Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.; Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2009, 48,1830.
doi: 10.1002/anie.v48:10 |
[52] |
Lu, Y.; Leow, D. S.; Wang, X. S.; Engle, K. M.; Yu, J. Q. Chem. Sci. 2011, 2,967.
doi: 10.1039/c0sc00633e |
[53] |
Luo, S.; Luo, F. X.; Zhang, X. S.; Shi, Z. J. Angew. Chem., Int. Ed. 2013, 52,10598.
doi: 10.1002/anie.201304295 |
[54] |
Lee, T. H.; Jayakumar, J.; Cheng, C. H.; Chuang, S. C. Chem. Commun. 2013, 49,11797.
doi: 10.1039/c3cc47197g |
[55] |
Zhang, J.; Zhang, X. Y.; Fan, X. S. J. Org. Chem. 2016, 81,3206.
doi: 10.1021/acs.joc.6b00166 |
[56] |
Fujiwara, Y.; Takaki, K.; Taniguchi, Y. Synlett 1996,591.
|
[57] |
Xie, P.; Xie, Y. J.; Qian, B.; Zhou, H.; Xia, C. G.; Huang, H. M. J. Am. Chem. Soc. 2012, 134,9902.
doi: 10.1021/ja3036459 |
[58] |
Xie, P.; Xia, C. G.; Huang, H. M. Org. Lett. 2013, 15,3370.
doi: 10.1021/ol401419u |
[59] |
Balavoine, G.; Clinet, J. C. J. Organomet. Chem. 1990,390, c84.
|
[60] |
Yoo, E. J.; Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132,17378.
doi: 10.1021/ja108754f |
[61] |
Wang, P. L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang, X. S. Org. Lett. 2015, 17,3698.
doi: 10.1021/acs.orglett.5b01658 |
[62] |
McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510,129.
doi: 10.1038/nature13389 pmid: 24870240 |
[63] |
Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. Nat. Chem. 2015, 7,1009.
doi: 10.1038/nchem.2367 pmid: 26587717 |
[64] |
Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, A. P.; Gaunt, M. J. Science 2016, 354,851.
doi: 10.1126/science.aaf9621 |
[65] |
Hogg, K. F.; Trowbridge, A.; Alvarez-Perez, A.; Gaunt, M. J. Chem. Sci. 2017, 8,8198.
doi: 10.1039/C7SC03876C |
[66] |
Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 56,11958.
doi: 10.1002/anie.201706303 |
[67] |
Png, Z. M.; Cabrera-Pardo, J. R.; Cadahia, J. J.; Gaunt, M. J. Chem. Sci. 2018, 9,7628.
doi: 10.1039/C8SC02855A |
[68] |
Cai, S.-L.; Li, Y.; Yang, C.; Sheng, J.; Wang, X.-S. ACS Catal. 2019, 9,10299.
doi: 10.1021/acscatal.9b03426 |
[69] |
Carny, T.; Rocaboy, R.; Clemenceau, A.; Baudoin, O. Angew. Chem. 2020, 132,19142.
doi: 10.1002/ange.v132.43 |
[70] |
Chen, H. J.; Cai, C. B.; Liu, X. H.; Li, X. W.; Jiang, H. F. Chem. Commun. 2011, 47,12224.
doi: 10.1039/c1cc15781g |
[71] |
Tanaka, K.; Ewing, W. R.; Yu, J. Q. J. Am. Chem. Soc. 2019, 141,15494.
doi: 10.1021/jacs.9b08238 pmid: 31519108 |
[72] |
Moore, E. J.; Pretzer, W. R.; Oconnell, T. J.; Harris, J.; Labounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114,5888.
doi: 10.1021/ja00040a078 |
[73] |
Chatani, N.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62,2604.
doi: 10.1021/jo970131r |
[74] |
Imoto, S.; Uemura, T.; Kakiuchi, F.; Chatani, N. Synlett 2007,170.
|
[75] |
Chatani, N.; Yorimitsu, S.; Asaumi, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2002, 67,7557.
pmid: 12375998 |
[76] |
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52,6293.
doi: 10.1002/anie.201301663 |
[77] |
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. ChemCatChem 2014, 6,1562.
doi: 10.1002/cctc.v6.6 |
[78] |
Chatani, N.; Ishii, Y.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1998, 63,5129.
doi: 10.1021/jo980335n |
[79] |
Fukuyama, T.; Chatani, N.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62,5647.
doi: 10.1021/jo970697f |
[80] |
Chatani, N.; Kamitani, A.; Murai, S. J. Org. Chem. 2002, 67,7014.
pmid: 12353994 |
[81] |
Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118,493.
doi: 10.1021/ja953473s |
[82] |
Chatani, N.; Fukuyama, T.; Tatamidani, H.; Kakiuchi, F.; Murai, S. J. Org. Chem.2000, 65, 4039.
|
[83] |
Fukuyama, T.; Chatani, N.; Tatsumi, J.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1998, 120,11522.
doi: 10.1021/ja982794b |
[84] |
Ie, Y.; Chatani, N.; Ogo, T.; Marshall, D. R.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2000, 65,1475.
doi: 10.1021/jo991660t |
[85] |
Asaumi, T.; Chatani, N.; Matsuo, T.; Kakiuchi, F.; Murai, S. J. Org. Chem. 2003, 68,7538.
pmid: 12968916 |
[86] |
Asaumi, T.; Matsuo, T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69,4433.
pmid: 15202898 |
[87] |
Haito, A.; Yamaguchi, M.; Chatani, N. Asian J. Org. Chem. 2018, 7,1315.
doi: 10.1002/ajoc.v7.7 |
[88] |
Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131,6898.
doi: 10.1021/ja900046z |
[89] |
Shibata, K.; Hasegawa, N.; Fukumoto, Y.; Chatani, N. ChemCatChem 2012, 4,1733.
doi: 10.1002/cctc.v4.11 |
[90] |
Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133,8070.
doi: 10.1021/ja2001709 pmid: 21542614 |
[91] |
Hasegawa, N.; Shibata, K.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. Tetrahedron 2013, 69,4466.
doi: 10.1016/j.tet.2013.02.006 |
[92] |
Kunin, A. J.; Eisenberg, R. J. Am. Chem. Soc. 1986, 108,535.
doi: 10.1021/ja00263a045 pmid: 22175490 |
[93] |
Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990, 112,7221.
doi: 10.1021/ja00176a022 |
[94] |
Zhou, D. Y.; Koike, T.; Suetsugu, S.; Onitsuka, K.; Takahashi, S. Inorg. Chim. Acta 2004, 357,3057.
doi: 10.1016/j.ica.2004.03.009 |
[95] |
Chatani, N.; Uemura, T.; Asaumi, T.; Ie, Y.; Kakiuchi, F.; Murai, S. Can. J. Chem. 2005, 83,755.
doi: 10.1139/v05-077 |
[96] |
Guan, Z. H.; Ren, Z. H.; Spinella, S. M.; Yu, S. C.; Liang, Y. M.; Zhang, X. M. J. Am. Chem. Soc. 2009, 131,729.
doi: 10.1021/ja807167y |
[97] |
Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47,12074.
doi: 10.1039/c1cc15843k |
[98] |
Gao, B.; Liu, S.; Lan, Y.; Huang, H. M. Organometallics 2016, 35,1480.
doi: 10.1021/acs.organomet.6b00072 |
[99] |
Huang, Q. F.; Han, Q. S.; Fu, S. R.; Yao, Z. Z.; Su, L.; Zhang, X. F.; Lin, S.; Xiang, S. C. J. Org. Chem. 2016, 81,12135.
doi: 10.1021/acs.joc.6b01200 |
[100] |
Gulias, M.; Marcos-Atanes, D.; Mascarenas, J. L.; Font, M. Org. Process Res. Dev. 2019, 23,1669.
doi: 10.1021/acs.oprd.9b00191 |
[101] |
Du, R. R.; Zhao, K.; Liu, J. H.; Han, F.; Xia, C. G.; Yang, L. Org. Lett. 2019, 21,6418.
doi: 10.1021/acs.orglett.9b02321 |
[102] |
Sakakura, T.; Ishiguro, K.; Okano, M.; Sako, T. Chem. Lett. 1997,1089.
|
[103] |
Choi, J. C.; Kobayashi, Y.; Sakakura, T. J. Org. Chem. 2001, 66,5262.
pmid: 11463285 |
[104] |
Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S. Organometallics 1997, 16,3615.
doi: 10.1021/om970372p |
[105] |
Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S. Tetrahedron Lett. 1997, 38,7565.
doi: 10.1016/S0040-4039(97)01738-3 |
[106] |
Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122,12882.
doi: 10.1021/ja002561w |
[107] |
Murahashi, S. J. Am. Chem. Soc. 1955, 77,6403.
|
[108] |
Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16,4688.
doi: 10.1021/ol502007t pmid: 25146415 |
[109] |
Liu, X. G.; Zhang, S. S.; Jiang, C. Y.; Wu, J. Q.; Li, Q. J.; Wang, H. G. Org. Lett. 2015, 17,5404.
doi: 10.1021/acs.orglett.5b02728 |
[110] |
Zeng, L.; Li, H. R.; Tang, S.; Gao, X. L.; Deng, Y.; Zhang, G. T.; Pao, C. W.; Chen, J. L.; Lee, J. F.; Lei, A. W. ACS Catal. 2018, 8,5448.
doi: 10.1021/acscatal.8b00683 |
[111] |
Qiu, S. X.; Zhai, S. X.; Wang, H. F.; Tao, C.; Zhao, H.; Zhai, H. B. Adv. Synth. Catal. 2018, 360,3271.
doi: 10.1002/adsc.v360.17 |
[112] |
Sau, S. C.; Mei, R. H.; Struwe, J.; Ackermann, L. ChemSusChem 2019, 12,3023.
doi: 10.1002/cssc.v12.13 |
[113] |
Williamson, P.; Galvan, A.; Gaunt, M. J. Chem. Sci. 2017, 8,2588.
doi: 10.1039/c6sc05581h pmid: 28553492 |
[114] |
Zeng, L.; Tang, S.; Wang, D.; Deng, Y.; Chen, J. L.; Lee, J. F.; Lei, A. W. Org. Lett. 2017, 19,2170.
doi: 10.1021/acs.orglett.7b00825 pmid: 28406640 |
[115] |
Li, Y. H.; Dong, K. W.; Zhu, F. X.; Wang, Z. C.; Wu, X. F. Angew. Chem., Int. Ed. 2016, 55,7227.
doi: 10.1002/anie.201603235 |
[116] |
Li, Y. H.; Zhu, F. X.; Wang, Z. C.; Wu, X. F. ACS Catal. 2016, 6,5561.
doi: 10.1021/acscatal.6b01413 |
[117] |
Li, Y. H.; Wang, C. S.; Zhu, F. X.; Wang, Z. C.; Dixneuf, P. H.; Wu, X. F. ChemSusChem 2017, 10,1341.
doi: 10.1002/cssc.v10.7 |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[3] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[4] | 王文芳. 过渡金属催化不对称C—H硼化反应研究进展[J]. 有机化学, 2023, 43(9): 3146-3166. |
[5] | 席敏, 段超, 迟捷, 付甜, 苏小龙, 王宏社. 腐殖酸作用下Strecker反应快速高效合成α-氨基腈[J]. 有机化学, 2023, 43(9): 3312-3318. |
[6] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[7] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[8] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[9] | 徐忠荣, 万结平, 刘云云. 基于热、光以及电化学过程的无过渡金属碳-氢键硫氰化和硒氰化反应[J]. 有机化学, 2023, 43(7): 2425-2446. |
[10] | 安大列, 包志鹏, 吴小锋. 含碳氟类底物参与的羰基化反应研究进展[J]. 有机化学, 2023, 43(7): 2304-2312. |
[11] | 石义军, 孙馨悦, 曹晗, 别福升, 马杰, 刘哲, 丛兴顺. 室温下酯与伯硫醇的硫酯化反应[J]. 有机化学, 2023, 43(7): 2499-2505. |
[12] | 董思凡, 李昊龙, 秦源, 范士明, 刘守信. 氨基酸作为瞬态导向基在碳氢键活化反应中的研究进展[J]. 有机化学, 2023, 43(7): 2351-2367. |
[13] | 褚杨杨, 韩召斌, 丁奎岭. 动力学拆分在过渡金属催化的不对称(转移)氢化中的应用研究[J]. 有机化学, 2023, 43(6): 1934-1951. |
[14] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[15] | 秦娇, 陈杰, 苏艳. 无过渡金属催化的α-溴代茚酮自由基裂解反应合成(2-氰基苯基)乙酸-2,2,6,6-四甲基哌啶酯[J]. 有机化学, 2023, 43(6): 2171-2177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||