有机化学 ›› 2021, Vol. 41 ›› Issue (11): 4370-4377.DOI: 10.6023/cjoc202106030 上一篇 下一篇
研究论文
收稿日期:
2021-06-15
修回日期:
2021-07-21
发布日期:
2021-08-17
通讯作者:
熊艳师
作者简介:
基金资助:
Xiang Zhou, Rujian Yu, Jiantao Wang, Xiangwen Liao, Yanshi Xiong()
Received:
2021-06-15
Revised:
2021-07-21
Published:
2021-08-17
Contact:
Yanshi Xiong
About author:
Supported by:
文章分享
报道了一种简单且温和的铜催化萘-1-胺与亚磺酸钠和亚磺酸锂的磺酰化反应. 在反应以碘作为氧化剂, 在比较温和的反应条件下, 可以高选择性地实现萘环C(4)的磺酰化反应, 并且以中等至较高产率生成了各种砜类衍生物.
周翔, 余茹鉴, 王金涛, 廖向文, 熊艳师. 铜催化亚磺酸钠盐参与的萘胺远程磺酰化反应[J]. 有机化学, 2021, 41(11): 4370-4377.
Xiang Zhou, Rujian Yu, Jiantao Wang, Xiangwen Liao, Yanshi Xiong. Copper-Catalyzed Remote Sulfonylation of 1-Naphthylamides with Sodium-Sulfinates[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4370-4377.
Entry | Catalyst | Oxidant (equiv.) | Solvent | Yieldb/% |
---|---|---|---|---|
1 | CuBr2 | — | DCE | 20 |
2 | CuBr2 | I2 (2.0) | DCE | 55 |
3 | CuBr2 | TBHP (2.0) | DCE | 32 |
4 | CuBr2 | DTBP (2.0) | DCE | 27 |
5 | CuBr2 | PhI(OAc)2 (2.0) | DCE | 40 |
6 | CuBr2 | BQ (2.0) | DCE | 17 |
7 | CuBr2 | Ag2CO3 (2.0) | DCE | 15 |
8 | CuBr2 | I2 (1.0) | DCE | 37 |
9 | CuBr2 | I2 (3.0) | DCE | 90 |
10 | Cu(OAc)2 | I2 (3.0) | DCE | 35 |
11 | CuCl2 | I2 (3.0) | DCE | 47 |
12 | Cu(OTf)2 | I2 (3.0) | DCE | 27 |
13 | Cu(OAc)2•H2O | I2 (3.0) | DCE | 35 |
14 | CuO | I2 (3.0) | DCE | Trace |
15 | — | I2 (3.0) | DCE | Trace |
16 | CuBr2 | I2 (3.0) | CH3CN | 57 |
17 | CuBr2 | I2 (3.0) | THF | 33 |
18 | CuBr2 | I2 (3.0) | DMSO | 67 |
19 | CuBr2 | I2 (3.0) | DMF | 45 |
20 | CuBr2 | I2 (3.0) | Toluene | 57 |
21 | CuBr2 | I2 (3.0) | MeOH | 23 |
22d | CuBr2 | I2 (3.0) | DCE | 66 |
23e | CuBr2 | I2 (3.0) | DCE | 75 |
Entry | Catalyst | Oxidant (equiv.) | Solvent | Yieldb/% |
---|---|---|---|---|
1 | CuBr2 | — | DCE | 20 |
2 | CuBr2 | I2 (2.0) | DCE | 55 |
3 | CuBr2 | TBHP (2.0) | DCE | 32 |
4 | CuBr2 | DTBP (2.0) | DCE | 27 |
5 | CuBr2 | PhI(OAc)2 (2.0) | DCE | 40 |
6 | CuBr2 | BQ (2.0) | DCE | 17 |
7 | CuBr2 | Ag2CO3 (2.0) | DCE | 15 |
8 | CuBr2 | I2 (1.0) | DCE | 37 |
9 | CuBr2 | I2 (3.0) | DCE | 90 |
10 | Cu(OAc)2 | I2 (3.0) | DCE | 35 |
11 | CuCl2 | I2 (3.0) | DCE | 47 |
12 | Cu(OTf)2 | I2 (3.0) | DCE | 27 |
13 | Cu(OAc)2•H2O | I2 (3.0) | DCE | 35 |
14 | CuO | I2 (3.0) | DCE | Trace |
15 | — | I2 (3.0) | DCE | Trace |
16 | CuBr2 | I2 (3.0) | CH3CN | 57 |
17 | CuBr2 | I2 (3.0) | THF | 33 |
18 | CuBr2 | I2 (3.0) | DMSO | 67 |
19 | CuBr2 | I2 (3.0) | DMF | 45 |
20 | CuBr2 | I2 (3.0) | Toluene | 57 |
21 | CuBr2 | I2 (3.0) | MeOH | 23 |
22d | CuBr2 | I2 (3.0) | DCE | 66 |
23e | CuBr2 | I2 (3.0) | DCE | 75 |
[1] |
(a) Patai, S.; Rappoport, C. Z.; Stirling, J. M. The Chemistry of Sulfones and Sulfoxides, Wiley, New York, 1988.
|
(b) Simpkins, N. S. Sulphones in Organic Synthesis, Pergamon Press, Oxford, 1993.
|
|
[2] |
La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Gatti, V.; Maga, G.; Samuele, A.; Pannecouque, C.; Schols, D.; Balzarini, J.; Novellino, E.; Silvestri, R. J. Med. Chem. 2011, 54, 1587.
doi: 10.1021/jm101614j |
[3] |
Ivachtchenko, A. V.; Golovina, E. S.; Kadieva, M. G.; Kysil, V. M.; Mitkin, O. D.; Tkachenko, S. E.; Okun, I. M. J. Med. Chem. 2011, 54, 8161.
doi: 10.1021/jm201079g pmid: 22029285 |
[4] |
(a) Catarinella, M.; Gruner, T.; Strittmatter, T.; Marx, A.; Mayer, T. U. Angew. Chem., Int. Ed. 2009, 48, 9072.
doi: 10.1002/anie.200904510 |
(b) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
doi: 10.1002/anie.201301634 |
|
(c) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
doi: 10.1021/ja4052685 |
|
(d) Reddy, M. A.; Reddy, P. S.; Sreedhar, B. Adv. Synth. Catal. 2010, 352, 1861.
doi: 10.1002/adsc.v352:11/12 |
|
(e) Fang, X.; Wang, W.; Yang, X.-Y.; Wu, F.-H. Chin. J. Org. Chem. 2021, 41, 412. (in Chinese)
doi: 10.6023/cjoc202007028 |
|
(方向, 王旺, 杨雪艳, 吴范宏, 有机化学, 2021, 41, 412.)
doi: 10.6023/cjoc202007028 |
|
[5] |
(a) Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2016, 18, 4144.
doi: 10.1021/acs.orglett.6b02289 pmid: 25025539 |
(b) Jiang, Q.; Xu, B.; Jia, J.; Zhao, A.; Zhao, Y. R.; Li, Y. Y.; He, N. N.; Guo, C.C. J. Org. Chem. 2014, 79, 7372.
doi: 10.1021/jo5010845 pmid: 25025539 |
|
(c) Li, J.-M.; Weng, J.; Lu, G.; Chan, A. S. C. Tetrahedron Lett. 2016, 57, 212.
pmid: 25025539 |
|
(d) Liang, S.; Manolikakes, G. Adv. Synth. Catal. 2016, 358, 2371.
doi: 10.1002/adsc.201600388 pmid: 25025539 |
|
(e) Liu, X.; Chen, X.; Mohr, J. T. Org. Lett. 2015, 17, 3572.
doi: 10.1021/acs.orglett.5b01675 pmid: 25025539 |
|
(f) Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Dong, Y.; Wu, Y.; Kong, X.; Jiang, L.; Wu, Y. Org. Lett. 2015, 17, 6086.
doi: 10.1021/acs.orglett.5b03114 pmid: 25025539 |
|
(g) Rao, W. H.; Shi, B. F. Org. Lett. 2015, 17, 2784.
doi: 10.1021/acs.orglett.5b01198 pmid: 25025539 |
|
(h) Rokade, B. V.; Prabhu, K. R. J. Org. Chem. 2014, 79, 8110.
doi: 10.1021/jo501314y pmid: 25025539 |
|
(i) Liu, D.; Mei, T.-S. Chin. J. Org. Chem. 2019, 39, 3600. (in Chinese)
doi: 10.6023/cjoc201900009 pmid: 25025539 |
|
(刘冬, 梅天胜, 有机化学, 2019, 39, 3600.)
doi: 10.6023/cjoc201900009 pmid: 25025539 |
|
[6] |
(a) Liu, N. M.; Liang, S.; Manolikakes, G. Synthesis 2016, 48, 1939.
doi: 10.1055/s-00000084 pmid: 28155938 |
(b) Shen, C.; Zhang, P. F.; Sun, Q.; Bai, S. Q.; Hor, T. S. A.; Liu, X. G. Chem. Soc. Rev. 2015, 44, 291.
doi: 10.1039/C4CS00239C pmid: 28155938 |
|
(c) Shaaban, S.; Liang, S.; Liu, N. W.; Manolikakes, G. Org. Biomol. Chem. 2017, 15, 1947.
doi: 10.1039/c6ob02424f pmid: 28155938 |
|
[7] |
(a) Zhao, X. D.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
doi: 10.1021/ja900200g |
(b) Liu, J. D.; Yu, L.; Zhuang, S. B.; Gui, Q. W.; Chen, X.; Wang, W. D.; Tan, Z. Chem. Commun. 2015, 51, 6418.
doi: 10.1039/C5CC00202H |
|
(c) Liang, H. W.; Jiang, K.; Ding, W.; Yuan, Y.; Shuai, L.; Chen, Y. C.; Wei, Y. Chem. Commun. 2015, 51, 16928.
doi: 10.1039/C5CC05527J |
|
(g) Xia, C. C.; Wang, K.; Xu, J.; Wei, Z. J.; Shen, C.; Duan, G. Y.; Zhu, Q.; Zhang, P. F. RSC Adv. 2016, 6, 37173.
doi: 10.1039/C6RA04013F |
|
[8] |
(a) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082.
doi: 10.1021/cr9000836 pmid: 21391562 |
(b) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
doi: 10.1039/c2cs15281a pmid: 21391562 |
|
(c) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.
doi: 10.1021/ar400270x pmid: 21391562 |
|
(d) Yang, L.; Huang, H. M. Chem. Rev. 2015, 115, 3468.
doi: 10.1021/cr500610p pmid: 21391562 |
|
(e) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
doi: 10.1021/cr100280d pmid: 21391562 |
|
(f) Ackermann, L. Chem. Rev. 2011, 111,1315.
doi: 10.1021/cr100412j pmid: 21391562 |
|
(g) Shen, C.; Zhang, P. F.; Sun, Q.; Bai, S. Q.; Hor, T. S. A.; Liu, X. G. Chem. Soc. Rev. 2015, 44, 291.
doi: 10.1039/C4CS00239C pmid: 21391562 |
|
(h) Wang, X.-Y.; Gao, J.-Q.; Xu, X.-T.; Fang, P.; Mei, T.-S. Chin. J. Org. Chem. 2021, 41, 384. (in Chinese)
doi: 10.6023/cjoc202005021 pmid: 21391562 |
|
(王向阳, 高君青, 徐学涛, 方萍, 梅天胜, 有机化学, 2021, 41, 384.)
doi: 10.6023/cjoc202005021 pmid: 21391562 |
|
[9] |
For selected examples containing naphthalene derivatives as substrates in C-H activation of arenes, see: (a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K.. J. Am. Chem. Soc. 2008, 130, 16474.
doi: 10.1021/ja806955s pmid: 27072283 |
(b) Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2012, 51, 7242.
doi: 10.1002/anie.201203230 pmid: 27072283 |
|
(c) Li, Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W. A.; Chen, G. Org. Lett. 2014, 16, 1764.
doi: 10.1021/ol500464x pmid: 27072283 |
|
(d) Shi, S.; Kuang, C. J. Org. Chem. 2014, 79, 6105.
doi: 10.1021/jo5008306 pmid: 27072283 |
|
(e) Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.
doi: 10.1002/chem.201500331 pmid: 27072283 |
|
(f) Kondrashov, M.; Raman, S.; Wendt, O. F. Chem. Commun. 2015, 51, 911.
doi: 10.1039/C4CC07962K pmid: 27072283 |
|
(g) Moghaddam, F. M.; Tavakoli, G.; Saeednia, B.; Langer, P.; Jafari, B. J. Org. Chem. 2016, 81, 3868.
doi: 10.1021/acs.joc.6b00329 pmid: 27072283 |
|
(h) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.
doi: 10.1002/(ISSN)1521-3773 pmid: 27072283 |
|
[10] |
(a) Huang, L.; Li, Q.; Wang, C.; Qi, C. J. Org. Chem. 2013, 78, 3030.
doi: 10.1021/jo400017v pmid: 28966841 |
(b) Odani, R.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 11045.
doi: 10.1021/jo402078q pmid: 28966841 |
|
(c) Huang, L.; Sun, X.; Li, Q.; Qi, C. J. Org. Chem. 2014, 79, 6720.
doi: 10.1021/jo500932x pmid: 28966841 |
|
(d) Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.
doi: 10.1021/jacs.5b04818 pmid: 28966841 |
|
(e) Zhang, X.; Si, W.; Bao, M.; Asao, N.; Yamamoto, Y.; Jin, T. Org. Lett. 2014, 16, 4830.
doi: 10.1021/ol502317c pmid: 28966841 |
|
(f) Naksomboon, K.; Valderas, C.; Gómez-Martínez, M.; Álvarez-Casao, Y.; Fernández-Ibáñez, M. Á. ACS Catal. 2017, 7, 6342.
doi: 10.1021/acscatal.7b02356 pmid: 28966841 |
|
[11] |
(a) Ju, L.; Yao, J.; Wu, Z.; Liu, Z.; Zhang, Y. J. Org. Chem. 2013, 78, 10821.
doi: 10.1021/jo401830k |
(b) Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.
doi: 10.1021/ol402904d |
|
[12] |
(a) Pradhan, S.; De, P. B.; Punniyamurthy, T. J. Org. Chem. 2017, 82, 4883.
doi: 10.1021/acs.joc.7b00615 pmid: 28421758 |
(b) Li, Z.; Su, S.; Qiao, H.; Yang, F.; Zhu, Y.; Kang, J.; Wu, Y.; Wu, Y. Org. Lett. 2016, 18, 4594.
doi: 10.1021/acs.orglett.6b02243 pmid: 28421758 |
|
(c) Martínez, Á. M.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Commun. 2014, 50, 2801.
doi: 10.1039/c3cc49633c pmid: 28421758 |
|
[13] |
(a) Xiong, Y. S.; Zhang, B.; Yu, Y.; Weng, J.; Lu, G. J. Org. Chem. 2019, 84, 13465.
doi: 10.1021/acs.joc.9b01646 |
(b) Li, J. M.; Wang, Y. H.; Yu, Y.; Wu, R. B.; Weng, J.; Lu, G. ACS Catal. 2017, 7, 2661.
doi: 10.1021/acscatal.6b03671 |
|
[14] |
(a) Iwasaki, M.; Iyanaga, M.; Tsuchiya, Y.; Nishimura, Y.; Li, W.; Li, Z.; Nishihara, Y. Chem.-Eur. J. 2014, 20, 2459.
doi: 10.1002/chem.201304717 |
(b) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330.
doi: 10.1021/jo502274t |
|
[15] |
Liang, S.; Bolte, M.; Manolikakes, G. Chem.-Eur. J. 2017, 23, 96;
doi: 10.1002/chem.201605101 |
[16] |
Bai, P.; Sun, S.; Li, Z.; Qiao, H.; Su, X.; Yang, F.; Wu, Y.; Wu, Y. J. Org. Chem. 2017, 82, 12119.
doi: 10.1021/acs.joc.7b01917 |
[17] |
(a) Rosen, H.; Hajdu, R.; Silver, L.; Kropp, H.; Dorso, K.; Kohler, J.; Sundelof, J. G.; Huber, J.; Hammond, G. G.; Jackson, J. J.; Gill, C. J.; Thompson, R.; Pelak, B. A.; Epstein-Toney, J. H.; Lankas, G.; Wilkening, R. R.; Wildonger, K. J.; Blizzard, T. A.; DiNinno, F. P.; Ratcliffe, R. W.; Heck, J. V.; Kozarich, J. W.; Hammond, M. L. Science 1999, 283, 703.
pmid: 9924033 |
(b) Kamal, A.; Ramakrishna, G.; Nayak, V. L.; Raju, P.; Rao, A. V. S.; Viswanath, A.; Vishnuvardhan, M. V. P. S.; Ramakrishna, S.; Srinivas, G. Bioorg. Med. Chem. 2012, 20, 789.
doi: 10.1016/j.bmc.2011.12.003 pmid: 9924033 |
|
(c) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2013, 57, 2832.
doi: 10.1021/jm401375q pmid: 9924033 |
|
[18] |
(a) Chen, J.; Han, X.; Mei, L.; Liu, J.; Du, K.; Cao, T.; Li, Q. RSC Adv. 2019, 9, 31212.
doi: 10.1039/C9RA07361B |
(b) Katrun, P.; Mueangkaew, C.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Soorukram, D.; Kuhakarn, C. J. Org. Chem. 2014, 79, 1778.
doi: 10.1021/jo402831k |
|
[19] |
(a) da Silva Corrêa, C. M. M.; Waters, W. A. J. Chem. Soc. C 1968, 1874.
|
(b) Truce, W. E.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727.
doi: 10.1021/jo00812a001 |
|
(c) Truce, W. E.; Heuring, D. L.; Wolf, G. C. J. Org. Chem. 1974, 39, 238.
doi: 10.1021/jo00916a027 |
|
(d) Liu, L. K.; Chi, Y.; Jen, K.-Y. J. Org. Chem. 1980, 45, 406.
doi: 10.1021/jo01291a006 |
|
(e) Harwood, L. M.; Julia, M.; Thuillier, G. L. Tetrahedron 1980, 36, 2483.
doi: 10.1016/0040-4020(80)80226-2 |
|
(f) Barluenga, J.; Martínez-Gallo, J. M.; Nájera, C.; Yus, M.; Fananas, F. J. J. Chem. Soc., Perkin Trans. 1 1987, 2605.
|
|
(g) Nájera, C.; Baldó, B.; Yus, M.J. Chem. Soc., Perkin Trans. 1 1988, 1029.
|
|
(h) daSilva Corrêa, C. M. M.; Fleming, M. D. C. M.; Oliveira, M. A. B. C. S. J. Chem. Soc., erkin Trans. 2 1994, 1993.
|
|
(i) Nájera, C.; Sansano, J. M.; Yus, M. J. Chem. Educ. 1995, 72, 664.
|
|
(j) Craig, D. C.; Edwards, G. L.; Muldoon, C. A. Synlett 1997, 1441.
|
[1] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[2] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[3] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[4] | 李春生, 连晓琪, 陈莲芬. 铜催化亚砜叶立德与邻苯二胺[4+2]环加成反应[J]. 有机化学, 2023, 43(4): 1492-1498. |
[5] | 刘洋, 黄翔, 王敏, 廖建. 铜催化环酮亚胺与β,γ-不饱和N-酰基吡唑不对称Mannich-Type反应[J]. 有机化学, 2023, 43(4): 1499-1509. |
[6] | 刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101. |
[7] | 韩彪, 李维双, 陈舒晗, 张泽浪, 赵雪, 张瑶瑶, 朱磊. 铜催化不饱和化合物硅加成反应的研究进展[J]. 有机化学, 2023, 43(2): 555-572. |
[8] | 吴宇恒, 颜岩, 寮渭巍. 双功能二氧化硫替代物在合成磺酰类化合物中的研究进展[J]. 有机化学, 2023, 43(11): 3713-3727. |
[9] | 陈志远, 杨梦维, 徐建林, 徐允河. 铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物[J]. 有机化学, 2023, 43(10): 3598-3607. |
[10] | 许力, 吕兰兰, 王香善. 铜催化烯醇硅醚与芳基亚磺酸钠合成β-酮砜的研究[J]. 有机化学, 2023, 43(10): 3644-3651. |
[11] | 危斌, 周子龙, 秦景灏, 严泽宇, 郭嘉程, 雷澍, 谢叶香, 欧阳旋慧, 宋仁杰. 氧杂蒽与亚磺酸钠的电化学氧化C(sp3)—H磺酰化反应[J]. 有机化学, 2023, 43(1): 186-194. |
[12] | 王川川, 马志伟, 侯学会, 杨龙华, 陈亚静. N-Ts氰胺在有机合成中的研究与应用[J]. 有机化学, 2023, 43(1): 74-93. |
[13] | 魏琬絜, 詹磊, 高雷, 黄国保, 马献力. 电化学合成C-磺酰基化合物的研究进展[J]. 有机化学, 2023, 43(1): 17-35. |
[14] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[15] | 徐琳琳, 兰美君, 张慕雨, 张永琪, 冯宇豪, 荣良策, 张金鹏. 芳基乙烯β-H区域选择性三氟甲基磺酰化反应[J]. 有机化学, 2022, 42(7): 2134-2139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||