有机化学 ›› 2022, Vol. 42 ›› Issue (8): 2471-2480.DOI: 10.6023/cjoc202112034 上一篇 下一篇
研究论文
收稿日期:
2021-12-26
修回日期:
2022-04-04
发布日期:
2022-05-17
通讯作者:
刘宁, 代斌
基金资助:
Fei Chena, Sheng Taob, Ning Liub(), Bin Daia,b()
Received:
2021-12-26
Revised:
2022-04-04
Published:
2022-05-17
Contact:
Ning Liu, Bin Dai
Supported by:
文章分享
将一类CNN型双核Cu(Ⅰ)配合物成功地应用于端炔和CO2的直接羧基化反应, 该反应在室温、常压CO2和较低催化剂用量条件下即可顺利进行. 该催化体系在端炔的直接羧基化反应中显示出较广的底物普适性, 以83%~97%的收率得到了一系列丙炔酸类产物. 该方法还可用于杂芳烃的连续羧基化反应及酯化反应. 控制实验和文献研究表明, Cs2CO3促进了端炔氢的脱除, 同时Cu(Ⅰ)配合物通过Cu(Ⅰ)中心与炔基配位作用对端炔活化起到了重要作用.
陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480.
Fei Chen, Sheng Tao, Ning Liu, Bin Dai. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO2 at Room Temperature[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2471-2480.
Entry | Catalyst (mol%) | Base (equiv.) | Time/h | Solvent | Yield/% |
---|---|---|---|---|---|
1 | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 92 |
2 | C2 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 60 |
3 | C3 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 70 |
4 | C4 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 50 |
5 | C1 (0.75) | Cs2CO3 (1.2) | 24 | DMF | 73 |
6 | C1 (0.50) | Cs2CO3 (1.2) | 24 | DMF | 55 |
7 | C1 (0.25) | Cs2CO3 (1.2) | 24 | DMF | 36 |
8 | C1 (1.0) | K2CO3 (1.2) | 24 | DMF | 8 |
9 | C1 (1.0) | Na2CO3 (1.2) | 24 | DMF | 0 |
10 | C1 (1.0) | DBU (1.2) | 24 | DMF | 16 |
11 | C1 (1.0) | Et3N (1.2) | 24 | DMF | 3 |
12 | C1 (1.0) | K3PO4 (1.2) | 24 | DMF | 5 |
13 | C1 (1.0) | NaOH (1.2) | 24 | DMF | 0 |
14 | C1 (1.0) | NatOBu (1.2) | 24 | DMF | 4 |
15 | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMA | 57 |
16 | C1 (1.0) | Cs2CO3 (1.2) | 24 | THF | 14 |
17 | C1 (1.0) | Cs2CO3 (1.2) | 24 | MeCN | 23 |
18 | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMSO | 60 |
19 | C1 (1.0) | Cs2CO3 (1.2) | 12 | DMF | 48 |
20 | C1 (1.0) | Cs2CO3 (1.2) | 18 | DMF | 72 |
21 | C1 (1.0) | Cs2CO3 (1.2) | 30 | DMF | 94 |
22 | C1 (1.0) | Cs2CO3 (1.0) | 24 | DMF | 62 |
23 | C1 (1.0) | Cs2CO3 (2.0) | 24 | DMF | 98 |
24 | C1 (1.0) | None | 24 | DMF | 0 |
25 | None | Cs2CO3 (1.2) | 24 | DMF | Trace |
26b | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 0 |
Entry | Catalyst (mol%) | Base (equiv.) | Time/h | Solvent | Yield/% |
---|---|---|---|---|---|
1 | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 92 |
2 | C2 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 60 |
3 | C3 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 70 |
4 | C4 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 50 |
5 | C1 (0.75) | Cs2CO3 (1.2) | 24 | DMF | 73 |
6 | C1 (0.50) | Cs2CO3 (1.2) | 24 | DMF | 55 |
7 | C1 (0.25) | Cs2CO3 (1.2) | 24 | DMF | 36 |
8 | C1 (1.0) | K2CO3 (1.2) | 24 | DMF | 8 |
9 | C1 (1.0) | Na2CO3 (1.2) | 24 | DMF | 0 |
10 | C1 (1.0) | DBU (1.2) | 24 | DMF | 16 |
11 | C1 (1.0) | Et3N (1.2) | 24 | DMF | 3 |
12 | C1 (1.0) | K3PO4 (1.2) | 24 | DMF | 5 |
13 | C1 (1.0) | NaOH (1.2) | 24 | DMF | 0 |
14 | C1 (1.0) | NatOBu (1.2) | 24 | DMF | 4 |
15 | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMA | 57 |
16 | C1 (1.0) | Cs2CO3 (1.2) | 24 | THF | 14 |
17 | C1 (1.0) | Cs2CO3 (1.2) | 24 | MeCN | 23 |
18 | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMSO | 60 |
19 | C1 (1.0) | Cs2CO3 (1.2) | 12 | DMF | 48 |
20 | C1 (1.0) | Cs2CO3 (1.2) | 18 | DMF | 72 |
21 | C1 (1.0) | Cs2CO3 (1.2) | 30 | DMF | 94 |
22 | C1 (1.0) | Cs2CO3 (1.0) | 24 | DMF | 62 |
23 | C1 (1.0) | Cs2CO3 (2.0) | 24 | DMF | 98 |
24 | C1 (1.0) | None | 24 | DMF | 0 |
25 | None | Cs2CO3 (1.2) | 24 | DMF | Trace |
26b | C1 (1.0) | Cs2CO3 (1.2) | 24 | DMF | 0 |
Entry | Catalyst (mol%) | Base | Solvent | Time/h | T/℃ | Yield/% |
---|---|---|---|---|---|---|
1 | C1 (1.5) | Cs2CO3 | DMF | 18 | 60 | 55 |
2 | C2 (1.5) | Cs2CO3 | DMF | 18 | 60 | 50 |
3 | C3 (1.5) | Cs2CO3 | DMF | 18 | 60 | 49 |
4 | C4 (1.5) | Cs2CO3 | DMF | 18 | 60 | 41 |
5 | C1 (3.0) | Cs2CO3 | DMF | 18 | 60 | 93 |
6 | C1 (4.5) | Cs2CO3 | DMF | 18 | 60 | 91 |
7 | C1 (3.0) | Cs2CO3 | DMF | 12 | 60 | 79 |
8 | C1 (3.0) | Cs2CO3 | DMF | 24 | 60 | 92 |
9 | C1 (3.0) | KtOBu | DMF | 18 | 60 | 72 |
10 | C1 (3.0) | LitOBu | DMF | 18 | 60 | 92 |
11 | C1 (3.0) | Cs2CO3 | DMF | 18 | 50 | 64 |
12 | C1 (3.0) | Cs2CO3 | DMF | 18 | 70 | 93 |
13 | C1 (3.0) | Cs2CO3 | DMA | 18 | 60 | 48 |
14 | C1 (3.0) | Cs2CO3 | DMSO | 18 | 60 | 54 |
15 | C1 (3.0) | Cs2CO3 | THF | 18 | 60 | 0 |
16 | C1 (3.0) | Cs2CO3 | CH3CN | 18 | 60 | Trace |
17 | C1 (3.0) | None | DMF | 18 | 60 | 0 |
18 | None | Cs2CO3 | DMF | 18 | 60 | 0 |
19b | C1 (3.0) | Cs2CO3 | DMF | 18 | 60 | 0 |
Entry | Catalyst (mol%) | Base | Solvent | Time/h | T/℃ | Yield/% |
---|---|---|---|---|---|---|
1 | C1 (1.5) | Cs2CO3 | DMF | 18 | 60 | 55 |
2 | C2 (1.5) | Cs2CO3 | DMF | 18 | 60 | 50 |
3 | C3 (1.5) | Cs2CO3 | DMF | 18 | 60 | 49 |
4 | C4 (1.5) | Cs2CO3 | DMF | 18 | 60 | 41 |
5 | C1 (3.0) | Cs2CO3 | DMF | 18 | 60 | 93 |
6 | C1 (4.5) | Cs2CO3 | DMF | 18 | 60 | 91 |
7 | C1 (3.0) | Cs2CO3 | DMF | 12 | 60 | 79 |
8 | C1 (3.0) | Cs2CO3 | DMF | 24 | 60 | 92 |
9 | C1 (3.0) | KtOBu | DMF | 18 | 60 | 72 |
10 | C1 (3.0) | LitOBu | DMF | 18 | 60 | 92 |
11 | C1 (3.0) | Cs2CO3 | DMF | 18 | 50 | 64 |
12 | C1 (3.0) | Cs2CO3 | DMF | 18 | 70 | 93 |
13 | C1 (3.0) | Cs2CO3 | DMA | 18 | 60 | 48 |
14 | C1 (3.0) | Cs2CO3 | DMSO | 18 | 60 | 54 |
15 | C1 (3.0) | Cs2CO3 | THF | 18 | 60 | 0 |
16 | C1 (3.0) | Cs2CO3 | CH3CN | 18 | 60 | Trace |
17 | C1 (3.0) | None | DMF | 18 | 60 | 0 |
18 | None | Cs2CO3 | DMF | 18 | 60 | 0 |
19b | C1 (3.0) | Cs2CO3 | DMF | 18 | 60 | 0 |
[1] |
(a) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
doi: 10.1021/acs.accounts.1c00135 pmid: 21387036 |
(b) Song, L.; Jiang, Y.-X.; Zhang, Z.; Gui, Y.-Y.; Zhou, X.-Y.; Yu, D.-G. Chem. Commun. 2020, 56, 8355.
doi: 10.1039/D0CC00547A pmid: 21387036 |
|
(c) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
doi: 10.1039/c0cs00129e pmid: 21387036 |
|
(d) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
doi: 10.6023/A19060208 pmid: 21387036 |
|
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
doi: 10.6023/A19060208 pmid: 21387036 |
|
(e) Gao, Y.; Wang, H.; Chi, Z.; Yang, L.; Zhou, C.; Li, G. CCS Chem. 2022, 4, 1565.
doi: 10.31635/ccschem.021.202100995 pmid: 21387036 |
|
[2] |
(a) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
doi: 10.1038/ncomms6933 |
(b) Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. ACS Catal. 2019, 9, 7937.
doi: 10.1021/acscatal.9b02113 |
|
(c) Francis, A.; Priya, S. S.; Kumar, S. H.; Sudhakar, K.; Tahir, M. J. CO2 Util. 2021, 47, 101515.
|
|
(d) Li, H.-R.; He, L.-N. Organometallics 2020, 39, 1461.
doi: 10.1021/acs.organomet.9b00642 |
|
[3] |
(a) Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Nature 2016, 531, 215.
doi: 10.1038/nature17185 |
(b) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47, 3021.
doi: 10.1039/C0CC03890C |
|
(c) Manjolinho, F.; Arndt, M.; Gooßen, K.; Gooßen, L. J. ACS Catal. 2012, 2, 2014.
doi: 10.1021/cs300448v |
|
(d) Qiao, C.; Cao, Y.; He, L.-N. Mini-Rev. Org. Chem. 2018, 15, 283.
doi: 10.2174/1570193X15666180101150819 |
|
(e) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem.,Int. Ed. 2018, 57, 15948.
doi: 10.1002/anie.201803186 |
|
[4] |
(a) Kim, S. H.; Kim, K. H.; Hong, S. H. Angew. Chem., nt. Ed. 2014, 53, 771.
pmid: 21473638 |
(b) Zhang, X.; Zhang, W.-Z.; Ren, X.; Zhang, L.-L.; Lu, X.-B. Org. Lett. 2011, 13, 2402.
doi: 10.1021/ol200638z pmid: 21473638 |
|
(c) Guo, C.-X.; Yu, B.; Xie, J.-N.; He, L.-N. Green Chem. 2015, 17, 474.
doi: 10.1039/C4GC01638F pmid: 21473638 |
|
(d) Arndt, M.; Risto, E.; Krause, T.; Gooßen, L. J. ChemCatChem 2012, 4, 484.
doi: 10.1002/cctc.201200047 pmid: 21473638 |
|
[5] |
(a) Yuan, Y.; Chen, C.; Zeng, C.; Mousavi, B.; Chaemchuen, S.; Verpoort, F. ChemCatChem 2017, 9, 882.
doi: 10.1002/cctc.201601379 |
(b) Wang, W.; Zhang, G.; Lang, R.; Xia, C.; Li, F. Green Chem. 2013, 15, 635.
doi: 10.1039/c3gc36830k |
|
(c) Li, S.; Sun, J.; Zhang, Z.; Xie, R.; Fang, X.; Zhou, M. Dalton Trans. 2016, 45, 10577.
doi: 10.1039/C6DT01746K |
|
(d) Bresciani, G.; Marchetti, F.; Pampaloni, G. New J. Chem. 2019, 43, 10821.
doi: 10.1039/c9nj02203a |
|
[6] |
(a) Liu, X.-H.; Ma, J.-G.; Niu, Z.; Yang, G.-M.; Cheng, P. Angew. Chem.,Int. Ed. 2015, 54, 988.
doi: 10.1002/anie.201409103 |
(b) Wu, Z.; Sun, L.; Liu, Q.; Yang, X.; Ye, X.; Hu, Y; Huang, Y. A. Green Chem. 2017, 19, 2080.
doi: 10.1039/C7GC00923B |
|
(c) Wu, Z.; Liu, Q.; Yang, X.; Ye, X.; Duan, H.; Zhang, J.; Zhao, B.; Huang, Y. ACS Sustainable Chem. Eng. 2017, 5, 9634.
doi: 10.1021/acssuschemeng.7b02678 |
|
(d) Yu, D.; Tan, M. X.; Zhang, Y. Adv. Synth. Catal. 2012, 354, 969.
doi: 10.1002/adsc.201100934 |
|
[7] |
Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J. Org. Chem. 1999, 64, 3975.
doi: 10.1021/jo982443f |
[8] |
Chen, J.-H.; Deng, C.-H.; Fang, S.; Ma, J.-G.; Cheng, P. Green Chem. 2018, 20, 989.
doi: 10.1039/C7GC03372A |
[9] |
Cheng, H.; Zhao, B.; Yao, Y.; Lu, C. Green Chem. 2015, 17, 1675.
doi: 10.1039/C4GC02200A |
[10] |
Shi, J.-B.; Bu, Q.; Liu, B.-Y.; Dai, B.; Liu, N. J. Org. Chem. 2021, 86, 1850.
doi: 10.1021/acs.joc.0c02673 |
[11] |
Fukue, Y.; Oi, S.; Inoue, Y. J. Chem. Soc., hem. Commun. 1994, 2091.
|
[12] |
Inamoto, K.; Asano, N.; Kobayashi, K.; Yonemoto, M.; Kondo, Y. A. Org. Biomol. Chem. 2012, 10, 1514.
doi: 10.1039/c2ob06884b |
[13] |
(a) Gooßen, L. J.; Rodríguez, N.; Manjolinho, F.; Lange, P. P. Adv. Synth. Catal. 2010, 352, 2913.
doi: 10.1002/adsc.201000564 pmid: 29504663 |
(b) Wendling, T.; Risto, E.; Krause, T.; Gooßen, L. J. Chem.-Eur. J. 2018, 24, 6019.
doi: 10.1002/chem.201800526 pmid: 29504663 |
|
[14] |
(a) Trivedi, M.; Singh, G.; Kumar, A.; Rath, N. P. Dalton Trans. 2015, 44, 20874.
doi: 10.1039/c5dt03794h pmid: 26568456 |
(b) Trivedi, M.; Smreker, J. R.; Singh, G.; Kumar, A.; Rath, N. P. New J. Chem. 2017, 41, 14145.
doi: 10.1039/C7NJ03038J pmid: 26568456 |
|
[15] |
Zhang, W.-Z.; Li, W.-J.; Zhang, X.; Zhou, H.; Lu, X.-B. Org. Lett. 2010, 12, 4748.
doi: 10.1021/ol102172v |
[16] |
Yu, D.; Zhang, Y. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20184.
doi: 10.1073/pnas.1010962107 |
[17] |
Yu, B.; Diao, Z.-F.; Guo, C.-X.; Zhong, C.-L.; He, L.-N.; Zhao, Y.-N.; Song, Q.-W.; Liu, A.-H.; Wang, J.-Q. Green Chem. 2013, 15, 2401.
doi: 10.1039/c3gc40896e |
[18] |
Li, F.-W.; Suo, Q.-L.; Hong, H.-L.; Zhu, N.; Wang, Y.-Q.; Han, L.-M. Tetrahedron Lett. 2014, 55, 3878.
doi: 10.1016/j.tetlet.2014.05.024 |
[19] |
Yu, B.; Xie, J.-N.; Zhong, C.-L.; Li, W.; He, L.-N. ACS Catal. 2015, 5, 3940.
doi: 10.1021/acscatal.5b00764 |
[20] |
Chen, F.; Tao, S.; Deng, Q.-Q.; Wei, D.; Liu, N.; Dai, B. J. Org. Chem. 2020, 85, 15197.
doi: 10.1021/acs.joc.0c02065 pmid: 33161704 |
[21] |
(a) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., nt. Ed. 2010, 49, 8670.
pmid: 20670021 |
(b) Inomata, H.; Ogata, K.; Fukuzawa, S.-I.; Hou, Z. Org. Lett. 2012, 14, 3986.
doi: 10.1021/ol301760n pmid: 20670021 |
|
(c) Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P. Angew. Chem., nt. Ed. 2010, 49, 8674.
pmid: 20670021 |
|
(d) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.
doi: 10.1021/ja103429q pmid: 20670021 |
|
(e) Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett. 2010, 12, 3567.
doi: 10.1021/ol101450u pmid: 20670021 |
|
(f) Ackermann, L. Angew. Chem., nt. Ed. 2011, 50, 3842.
pmid: 20670021 |
|
(g) Fenner, S.; Ackermann, L. Green Chem. 2016, 18, 3804.
doi: 10.1039/C6GC00200E pmid: 20670021 |
|
[22] |
(a) Braunstein, P.; Naud, F. Angew. Chem., nt. Ed. 2001, 40, 680.
|
(b) Bailey, W. D.; Luconi, L.; Rossin, A.; Yakhvarov, D.; Flowers, S. E.; Kaminsky, W.; Kemp, R. A.; Giambastiani, G.; Goldberg, K. I. Organometallics 2015, 34, 3998.
doi: 10.1021/acs.organomet.5b00355 |
|
(c) Fleckhaus, A.; Mousa, A. H.; Lawal, N. S.; Kazemifar, N. K.; Wendt, O. F. Organometallics 2015, 34, 1627.
doi: 10.1021/om501231k |
|
[23] |
Xie, J.-N.; Yu, B.; Zhou, Z.-H.; Fu, H.-C.; Wang, N.; He, L.-N. Tetrahedron Lett. 2015, 56, 7059.
doi: 10.1016/j.tetlet.2015.11.028 |
[24] |
Jover, J.; Maseras, F. J. Org. Chem. 2014, 79, 11981.
doi: 10.1021/jo501837p |
[25] |
Yu, D.; Zhang, Y. Green Chem. 2011, 13, 1275.
doi: 10.1039/c0gc00819b |
[26] |
Feng, Q.; Yang, K.; Song, Q. Chem. Commun. 2015, 51, 15394.
doi: 10.1039/C5CC05084G |
[27] |
Yu, B.; Yang, P.; Gao, X.; Yang, Z. Z.; Zhao, Y. F.; Zhang, H. Y.; Liu, Z. M. C. New J. Chem. 2017, 41, 9250.
doi: 10.1039/C7NJ01779K |
[28] |
Wang, W.-H.; Feng, X.; Sui, K.; Fang, D.; Bao, M. J. CO2 Util. 2019, 32, 140.
|
[1] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[2] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[3] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[4] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[5] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[6] | 鲍志成, 李慕尧, 王剑波. 铜催化芳基重氮乙酸酯与双[(频哪醇)硼基]甲烷的偶联反应[J]. 有机化学, 2023, 43(5): 1808-1814. |
[7] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[8] | 李春生, 连晓琪, 陈莲芬. 铜催化亚砜叶立德与邻苯二胺[4+2]环加成反应[J]. 有机化学, 2023, 43(4): 1492-1498. |
[9] | 刘洋, 黄翔, 王敏, 廖建. 铜催化环酮亚胺与β,γ-不饱和N-酰基吡唑不对称Mannich-Type反应[J]. 有机化学, 2023, 43(4): 1499-1509. |
[10] | 刘春阳, 李燕, 张前. 铜催化环状烯烃烯丙位C(sp3)—H磺酰化反应研究[J]. 有机化学, 2023, 43(3): 1091-1101. |
[11] | 韩彪, 李维双, 陈舒晗, 张泽浪, 赵雪, 张瑶瑶, 朱磊. 铜催化不饱和化合物硅加成反应的研究进展[J]. 有机化学, 2023, 43(2): 555-572. |
[12] | 刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635. |
[13] | 苏沛锋, 倪金煜, 柯卓锋. 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023, 43(10): 3526-3543. |
[14] | 陈志远, 杨梦维, 徐建林, 徐允河. 铜催化双炔膦氧化物硅质子化反应合成β-硅基取代的乙烯基膦氧化物[J]. 有机化学, 2023, 43(10): 3598-3607. |
[15] | 许力, 吕兰兰, 王香善. 铜催化烯醇硅醚与芳基亚磺酸钠合成β-酮砜的研究[J]. 有机化学, 2023, 43(10): 3644-3651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||