有机化学 ›› 2022, Vol. 42 ›› Issue (9): 2823-2831.DOI: 10.6023/cjoc202206001 上一篇 下一篇
研究论文
潘振涛a,b, 刘彤b, 马永敏b, 颜剑波c, 王亚军a,*()
收稿日期:
2022-06-01
修回日期:
2022-06-20
发布日期:
2022-06-29
通讯作者:
王亚军
基金资助:
Zhentao Pana,b, Tong Liub, Yongmin Mab, Jianbo Yanc, Ya-Jun Wanga()
Received:
2022-06-01
Revised:
2022-06-20
Published:
2022-06-29
Contact:
Ya-Jun Wang
Supported by:
文章分享
报道了一种布朗斯特酸/可见光氧化还原接力催化合成喹唑啉(硫)酮的方法. 在温和的反应条件下, 原料2-氨基苯乙酮和异(硫)氰酸酯先后经历了布朗斯特酸催化的[4+2]环化反应和光催化的碳-碳键断裂反应, 得到各种不同取代的喹唑啉-2,4-二酮和喹唑啉-2-硫酮-4-酮. 该合成方法具有能源和溶剂绿色、无金属催化剂、起始原料简单以及以空气作为绿色氧化剂等特点.
潘振涛, 刘彤, 马永敏, 颜剑波, 王亚军. 布朗斯特酸/可见光氧化还原接力催化构建喹唑啉(硫)酮[J]. 有机化学, 2022, 42(9): 2823-2831.
Zhentao Pan, Tong Liu, Yongmin Ma, Jianbo Yan, Ya-Jun Wang. Construction of Quinazolin(thi)ones by Brønsted Acid/Visible-Light Photoredox Relay Catalysis[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2823-2831.
Entry | Brønsted acid | Photocatalyst | Solvent | Yieldb/% | |
---|---|---|---|---|---|
1 | TfOH | Ru(bpz)3PF6 | DMSO | 46 | |
2 | TFA | Ru(bpz)3PF6 | DMSO | 53 | |
3 | AcOH | Ru(bpz)3PF6 | DMSO | 59 | |
4 | H2SO4 | Ru(bpz)3PF6 | DMSO | 35 | |
5 | HNO3 | Ru(bpz)3PF6 | DMSO | 28 | |
6 | TsOH | Ru(bpz)3PF6 | DMSO | 63 | |
7 | TsOH | Ru(bpm)3PF6 | DMSO | 58 | |
8 | TsOH | [Ir(dF(CF3)ppy)2dtbbpy]PF6 | DMSO | 72 | |
9 | TsOH | Mes-Acr-Me+ClO4– | DMSO | 64 | |
Entry | Brønsted acid | Photocatalyst | Solvent | Yieldb/% | |
10 | TsOH | Rose Bengal | DMSO | 36 | |
11 | TsOH | Eosin Y | DMSO | 49 | |
12 | TsOH | 4CzIPN | DMSO | 73 | |
13 | TsOH | 4CzIPN | DMF | 70 | |
14 | TsOH | 4CzIPN | MeCN | 81 | |
15 | TsOH | 4CzIPN | THF | 57 | |
16 | TsOH | 4CzIPN | CHCl3 | 74 | |
17 | TsOH | 4CzIPN | EtOH | 84 |
Entry | Brønsted acid | Photocatalyst | Solvent | Yieldb/% | |
---|---|---|---|---|---|
1 | TfOH | Ru(bpz)3PF6 | DMSO | 46 | |
2 | TFA | Ru(bpz)3PF6 | DMSO | 53 | |
3 | AcOH | Ru(bpz)3PF6 | DMSO | 59 | |
4 | H2SO4 | Ru(bpz)3PF6 | DMSO | 35 | |
5 | HNO3 | Ru(bpz)3PF6 | DMSO | 28 | |
6 | TsOH | Ru(bpz)3PF6 | DMSO | 63 | |
7 | TsOH | Ru(bpm)3PF6 | DMSO | 58 | |
8 | TsOH | [Ir(dF(CF3)ppy)2dtbbpy]PF6 | DMSO | 72 | |
9 | TsOH | Mes-Acr-Me+ClO4– | DMSO | 64 | |
Entry | Brønsted acid | Photocatalyst | Solvent | Yieldb/% | |
10 | TsOH | Rose Bengal | DMSO | 36 | |
11 | TsOH | Eosin Y | DMSO | 49 | |
12 | TsOH | 4CzIPN | DMSO | 73 | |
13 | TsOH | 4CzIPN | DMF | 70 | |
14 | TsOH | 4CzIPN | MeCN | 81 | |
15 | TsOH | 4CzIPN | THF | 57 | |
16 | TsOH | 4CzIPN | CHCl3 | 74 | |
17 | TsOH | 4CzIPN | EtOH | 84 |
[1] |
(a) Bouley, R.; Kumarasiri, M.; Peng, Z.; Otero, L. H.; Song, W.; Suckow, M. A.; Schroeder, V. A.; Wolter, W. R.; Lastochkin, E.; Antunes, N. T.; Pi, H.; Vakulenko, S.; Hermoso, J. A.; Chang, M.; Mobashery, S. J. Am. Chem. Soc. 2015, 137, 1738.
doi: 10.1021/jacs.5b00056 pmid: 21271733 |
(b) Zhuang, Y.; Teng, X.; Wang, Y.; Liu, P.; Li, G.; Zhu, W. Org. Lett. 2011, 13, 1130.
doi: 10.1021/ol103164n pmid: 21271733 |
|
(c) Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Eur. J. Med. Chem. 2015, 90, 124.
doi: 10.1016/j.ejmech.2014.10.084 pmid: 21271733 |
|
(d) Zhuang, Y.; Teng, X.; Wang, Y.; Liu, P.; Li, G.; Zhu, W. Org. Lett. 2011, 13, 1130.
doi: 10.1021/ol103164n pmid: 21271733 |
|
[2] |
(a) Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76, 193.
doi: 10.1016/j.ejmech.2014.02.005 |
(b) Ismail, M. A. H.; Barker, S.; Ella, D. A. A. E.; Abouzid, K. A. M.; Toubar, R. A.; Todd, M. H. J. Med. Chem. 2006, 49, 1526.
doi: 10.1021/jm050232e |
|
[3] |
Crespo, I.; Gimenez-Dejoz, J.; Porte, S.; Cousido-Siah, A.; Mitschler, A.; Podjarny, A.; Pratsinis, H.; Kletsas, D.; Pares, X.; Ruiz, F. X.; Metwally, K.; Farres, J. Eur. J. Med. Chem. 2018, 152, 160.
doi: 10.1016/j.ejmech.2018.04.015 |
[4] |
(a) Castellani, B.; Diamanti, E.; Pizzirani, D.; Tardia, P.; Maccesi, M.; Realini, N.; Magotti, P.; Garau, G.; Bakkum, T.; Rivara, S.; Mor, M.; Piomelli, D. Chem. Commun. 2017, 53, 12814.
doi: 10.1039/C7CC07582K |
(b) Jiang, Z.; Hong, W. D.; Cui, X.; Gao, H.; Wu, P.; Chen, Y.; Shen, D.; Yang, Y.; Zhang, B.; Taylor, M. J.; Ward, S. A.; O'Neill, P. M.; Zhao, S.; Zhang, K. RSC Adv. 2017, 7, 52227.
doi: 10.1039/C7RA10352B |
|
[5] |
(a) Bouchut, A.; Rotili, D.; Pierrot, C.; Valente, S.; Lafitte, S.; Schultz, J.; Hoglund, U.; Mazzone, R.; Lucidi, A.; Fabrizi, G.; Pechalrieu, D.; Arimondo, P. B.; Skinner-Adams, T. S.; Chua, M. J.; Andrews, K. T.; Mai, A.; Khalife, J. Eur. J. Med. Chem. 2019, 161, 277.
doi: S0223-5234(18)30910-3 pmid: 22155684 |
(b) Rojas-Aguirre, Y.; Hernandez-Luis, F.; Mendoza-Martinez, C.; Sotomayor, C. P.; Aguilar, L. F.; Villena, F.; Castillo, I.; Hernandez, D. J.; Suwalsky, M. Biochim. Biophys. Acta 2012, 1818, 738.
doi: 10.1016/j.bbamem.2011.11.026 pmid: 22155684 |
|
[6] |
(a) Kuang, Y.; Sechi, M.; Nurra, S.; Ljungman, M.; Neamati, N. J. Med. Chem. 2018, 61, 1576.
doi: 10.1021/acs.jmedchem.7b01463 pmid: 29648554 |
(b) Zhou, J.; Ji, M.; Yao, H.; Cao, R.; Zhao, H.; Wang, X.; Chen, X.; Xu, B. Org. Biomol. Chem. 2018, 16, 3189.
doi: 10.1039/c8ob00286j pmid: 29648554 |
|
(c) Richter, S.; Gioffreda, B. Arch. Pharm. 2011, 344, 810.
doi: 10.1002/ardp.201000312 pmid: 29648554 |
|
[7] |
(a) David, L. D.; Brenner, R. C. Phytocheraistry 1980, 19, 935.
|
(b) Fakhraian, H.; Heydary, M. J. Heterocycl. Chem. 2014, 51, 151.
doi: 10.1002/jhet.1897 |
|
(c) Lee, Y. S.; Chen, Z.; Kador, P. F. Bioorg. Med. Chem. 1998, 6, 1811.
doi: 10.1016/S0968-0896(98)00139-4 |
|
(d) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
doi: 10.1016/j.cbpa.2010.02.018 |
|
[8] |
(a) Xie, Z.; Lan, J.; Zhu, H.; Lei, G.; Jiang, G.; Le, Z. Chin. Chem. Lett. 2021, 32, 1427.
doi: 10.1016/j.cclet.2020.09.059 |
(b) Qi, X.-X.; Song, Z.-Z.; Gong, J.-L.; Fang, Z.-Y.; Wu, X.-F. Chin. Chem. Lett. 2016, 27, 21.
doi: 10.1016/j.cclet.2015.08.003 |
|
(c) Sun, M.; Li, J.; Chen, W.; Wu, H.; Yang, J.; Wang, Z. Synthesis 2020, 52, 1253.
doi: 10.1055/s-0039-1690219 |
|
[9] |
Willis, M. C.; Snell, R. H.; Fletcher, A. J.; Woodward, R. L. Org. Lett. 2006, 8, 5089.
doi: 10.1021/ol062009x |
[10] |
Li, J.; Chen, X.; Shi, D.; Ma, S.; Li, Q.; Zhang, Q.; Tang, J. Org. Lett. 2009, 11, 1193.
doi: 10.1021/ol900093h |
[11] |
Mampuys, P.; Neumann, H.; Sergeyev, S.; Orru, R. V. A.; Jiao, H.; Spannenberg, A.; Maes, B. U. W.; Beller, M. ACS Catal. 2017, 7, 5549.
doi: 10.1021/acscatal.7b01503 |
[12] |
Beutner, G. L.; Hsiao, Y.; Razler, T.; Simmons, E. M.; Wertjes, W. Org. Lett. 2017, 19, 1052.
doi: 10.1021/acs.orglett.7b00052 |
[13] |
(a) Candish, L.; Collins, K. D.; Cook, G. C.; Douglas, J. J.; Gomez-Suarez, A.; Jolit, A.; Keess, S. Chem. Rev. 2022, 122, 2907.
doi: 10.1021/acs.chemrev.1c00416 |
(b) Geng, X.; Xu, Z.; Cai, Y.; Wang, L. Org. Lett. 2021, 23, 8343.
doi: 10.1021/acs.orglett.1c03076 |
|
(c) Zhang, W.; Bu, J.; Wang, L.; Li, P.; Li, H. Org. Chem. Front. 2021, 8, 5045.
doi: 10.1039/D1QO00739D |
|
(d) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
doi: 10.1002/anie.201503479 |
|
(e) Wang, Z.; Wang, L.; Wang, Z.; Li, L.; Zhang, Y. Chin. Chem. Lett. 2021, 32, 429.
doi: 10.1016/j.cclet.2020.02.022 |
|
(f) Yang, S.; Wang, L.; Wang, L.; Li, H. J. Org. Chem. 2020, 85, 564.
doi: 10.1021/acs.joc.9b02646 |
|
(g) Sun, X.; Qu, C.; Ma, C.; Zhao, X.; Chai, G.; Jiang, Z. Chin. J. Org. Chem. 2022, doi: 10.6023/cjoc202201025. (in Chinese)
doi: 10.6023/cjoc202201025 |
|
(h) Wang, B.; Zou, L.; Wang, L.; Sun, M.; Li, P. Chin. Chem. Lett. 2021, 32, 1229.
doi: 10.1016/j.cclet.2020.08.013 |
|
(i) Yu, X. Y.; Chen, J. R.; Xiao, W. J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
|
(j) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
doi: 10.1038/s41570-017-0052 |
|
[14] |
(a) Pan, Z.; Yang, X.; Chen, B.; Shi, S.; Liu, T.; Xiao, X.; Shen, L.; Lou, L.; Ma, Y. J. Org. Chem. 2022, 87, 3596.
doi: 10.1021/acs.joc.1c03151 |
(b) Wang, L.; Li, S.; Xiao, X.; Xu, W.; Zhang, P.; Ma, Y. Adv. Synth. Catal. 2022, 364, 855.
doi: 10.1002/adsc.202101324 |
|
(c) Ding, Y.; Zhang, R.; Ma, R.; Ma, Y. Adv. Synth. Catal. 2021, 364, 355.
doi: 10.1002/adsc.202100991 |
|
(d) Ding, Y.; Kuang, J.; Xiao, X.; Wang, L.; Ma, Y. J. Org. Chem. 2021, 86, 12257.
doi: 10.1021/acs.joc.1c01602 |
|
(e) Pan, Z.; Shi, S.; Yang, X.; Xiao, X.; Zhang, W.; Wang, S.; Ma, Y. Green Chem. 2021, 23, 2944.
doi: 10.1039/D1GC00889G |
|
(f) Yan, H.; Xiao, X. Q.; Hider, R. C.; Ma, Y. Front. Chem. 2019, 7, 584.
doi: 10.3389/fchem.2019.00584 |
|
[15] |
(a) Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, L. B.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
doi: 10.1021/jacs.0c11138 |
(b) Zhang, Y.; Yue, X.; Liang, C.; Zhao, J.; Yu, W.; Zhang, P. Tetrahedron Lett. 2021, 80, 153321.
doi: 10.1016/j.tetlet.2021.153321 |
|
(c) Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C.-H. Green Chem. 2011, 13, 3341.
doi: 10.1039/c1gc15865a |
|
(d) Dai, C.; Zhan, Y.; Liu, P.; Sun, P. Green Chem. 2021, 23, 314.
doi: 10.1039/D0GC03697H |
|
(e) Frimer, A. A. Chem. Rev. 1979, 79, 359.
doi: 10.1021/cr60321a001 |
|
[16] |
(a) Shi, G.; He, X.; Shang, Y. Yang, C.; Xiang, L. Chin. J. Chem. 2017, 35, 1835.
doi: 10.1002/cjoc.201700280 pmid: 32363314 |
(b) Chen, H.; Li, P.; Qin, R.; Yan, H.; Li, G.; Huang, H. ACS Omega 2020, 5, 9614.
doi: 10.1021/acsomega.0c01104 pmid: 32363314 |
|
(c) Dou, G.-L.; Wang, M.-M.; Huang, Z.-B. Shi, D.-Q. J. Heterocycl. Chem. 2009, 46, 645.
doi: 10.1002/jhet.121 pmid: 32363314 |
|
(d) Matsumoto, Y.; Noguchi-Yachide, T.; Nakamura, M.; Mita, Y.; Numadate, A.; Hashimoto, Y. Heterocycles 2012, 86, 1449.
doi: 10.3987/COM-12-S(N)109 pmid: 32363314 |
|
(e) Li, Z.; Huang, H.; Sun, H.; Jiang, H.; Liu, H. J. Comb. Chem. 2008, 10, 484.
doi: 10.1021/cc800040z pmid: 32363314 |
|
(f) Shestakova, A. S.; Sidorenkoa, O. E.; Bushmarinovb, I. S.; Shikhalieva, K. S.; Antipin, M. Y. Russ. J. Org. Chem. 2009, 45, 1691.
doi: 10.1134/S1070428009110190 pmid: 32363314 |
|
(g) Zhang, X.; Ding, Q.; Wang, J.; Yang, J.; Fan, X.; Zhang, G. Green Chem. 2021, 23, 526.
doi: 10.1039/D0GC03254A pmid: 32363314 |
|
(h) Das, S.; Rawat, N.; Panda, T. K. ChemistrySelect 2020, 5, 476.
doi: 10.1002/slct.201904414 pmid: 32363314 |
|
(i) Sayahi, M. H.; Saghanezhad, S. J.; Bahadorikhalili, S.; Mahdavi, M. Appl. Organomet. Chem. 2019, 33, 4635.
pmid: 32363314 |
|
(j) Rivero, I. A.; Guerrero, L.; Espinoza, K. A.; Meza, M. C.; Rodríguez, J. R. Molecules 2009, 14, 1860.
doi: 10.3390/molecules14051860 pmid: 32363314 |
[1] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[2] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[3] | 李阳, 袁锦鼎, 赵頔. 低共熔溶剂1,3-二甲基脲/L-(+)-酒石酸中(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成[J]. 有机化学, 2023, 43(9): 3268-3276. |
[4] | 周然, 袁春梅, 张桃, 毛飘, 刘燚, 孟开妮, 幸惠, 薛伟. 含喹唑啉酮的查尔酮衍生物的设计、合成及生物活性研究[J]. 有机化学, 2023, 43(9): 3196-3209. |
[5] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[6] | 高艳华, 张银潘, 张妍, 宋涛, 杨勇. 可见光驱动表面富含氧空位Nb2O5催化醇氧化反应[J]. 有机化学, 2023, 43(7): 2572-2579. |
[7] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[8] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[9] | 赵金晓, 魏彤辉, 柯森, 李毅. 可见光催化合成二氟烷基取代的多环吲哚化合物[J]. 有机化学, 2023, 43(3): 1102-1114. |
[10] | 赵瑜, 段玉荣, 史时辉, 白育斌, 黄亮珠, 杨晓军, 张琰图, 冯彬, 张建波, 张秋禹. 可见光促进高价碘(III)试剂参与反应的研究进展[J]. 有机化学, 2023, 43(12): 4106-4140. |
[11] | 程飞, 孙琪雯, 卢江溶, 王兴兰, 张吉泉. 芳基二硫醚作为自由基硫试剂构建C—S键研究进展[J]. 有机化学, 2023, 43(11): 3728-3744. |
[12] | 李硕, 王明亮, 周来运, 王兰芝. 磁性纳米负载对甲苯磺酸催化串联合成稠合多环的1,5-苯并氧氮杂䓬类化合物[J]. 有机化学, 2023, 43(11): 3977-3988. |
[13] | 陈凤娟, 刘罗, 张子露, 曾伟. 可见光催化有机硅的合成研究进展[J]. 有机化学, 2023, 43(10): 3454-3469. |
[14] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[15] | 汪蕾, 于淑晶, 杨娜, 王宝雷. 新型含二氢喹唑啉酮的咖啡因衍生物的合成及生物活性研究[J]. 有机化学, 2023, 43(1): 299-307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||