有机化学 ›› 2024, Vol. 44 ›› Issue (5): 1675-1685.DOI: 10.6023/cjoc202312018 上一篇 下一篇
研究论文
段东森, 马媛, 刘宇博, 程富, 朱道勇*(), 王少华*()
收稿日期:
2023-12-18
修回日期:
2023-12-21
发布日期:
2024-01-05
基金资助:
Dongsen Duan, Yuan Ma, Yubo Liu, Fu Cheng, Daoyong Zhu(), Shaohua Wang()
Received:
2023-12-18
Revised:
2023-12-21
Published:
2024-01-05
Contact:
*E-mail: Supported by:
文章分享
报道了一种高效的可见光促进的活化烯烃脱碳羧化的方法, 与传统的烯烃羧化相比, 该方法条件温和, 收率最高可达96%, 对多种官能团具有很好的兼容性, 为芳基乙酸的合成及后续转化提供了新方法. 机理研究表明, 该反应是通过对烯烃碳碳双键的置换, 实现了表观碳数不变的对应羧酸的合成.
段东森, 马媛, 刘宇博, 程富, 朱道勇, 王少华. 可见光诱导的二氧化碳对活化烯烃的脱碳羧基化反应[J]. 有机化学, 2024, 44(5): 1675-1685.
Dongsen Duan, Yuan Ma, Yubo Liu, Fu Cheng, Daoyong Zhu, Shaohua Wang. Visible Light-Induced Decarbon-Carboxylation of Activated Alkenes by Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, 2024, 44(5): 1675-1685.
Entry | Photocatalyst | Amine | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | 4DPAIPN | DIPEA | DMSO | 6 | 58 |
2 | 4DPAIPN | TEA | DMSO | 6 | N.D. |
3 | 4DPAIPN | Cy2NMe | DMSO | 6 | 73 |
4 | 4DPAIPN | NIMBA | DMSO | 6 | 75 |
5c | 4DPAIPN | NIMBA | DMSO | 6 | 30 |
6d | 4DPAIPN | NIMBA | DMSO | 6 | 65 |
7 | 4DPAIPN | NIMBA | DMF | 6 | 69 |
8 | 4DPAIPN | NIMBA | NMP | 6 | 45 |
9 | 4DPAIPN | NIMBA | MeCN | 6 | 52 |
10 | 4CzIPN | NIMBA | DMSO | 6 | N.D. |
11 | 3DPAFIPN | NIMBA | DMSO | 6 | 70 |
12 | fac-Ir(ppy)3 | NIMBA | DMSO | 6 | N.D. |
13 | 4DPAIPN | NIMBA | DMSO | 1 | 58 |
14 | 4DPAIPN | NIMBA | DMSO | 3 | 70 |
15 | 4DPAIPN | NIMBA | DMSO | 12 | 75 |
16 | 4DPAIPN | NIMBA | DMSO | 24 | 86 (78)e |
Entry | Photocatalyst | Amine | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | 4DPAIPN | DIPEA | DMSO | 6 | 58 |
2 | 4DPAIPN | TEA | DMSO | 6 | N.D. |
3 | 4DPAIPN | Cy2NMe | DMSO | 6 | 73 |
4 | 4DPAIPN | NIMBA | DMSO | 6 | 75 |
5c | 4DPAIPN | NIMBA | DMSO | 6 | 30 |
6d | 4DPAIPN | NIMBA | DMSO | 6 | 65 |
7 | 4DPAIPN | NIMBA | DMF | 6 | 69 |
8 | 4DPAIPN | NIMBA | NMP | 6 | 45 |
9 | 4DPAIPN | NIMBA | MeCN | 6 | 52 |
10 | 4CzIPN | NIMBA | DMSO | 6 | N.D. |
11 | 3DPAFIPN | NIMBA | DMSO | 6 | 70 |
12 | fac-Ir(ppy)3 | NIMBA | DMSO | 6 | N.D. |
13 | 4DPAIPN | NIMBA | DMSO | 1 | 58 |
14 | 4DPAIPN | NIMBA | DMSO | 3 | 70 |
15 | 4DPAIPN | NIMBA | DMSO | 12 | 75 |
16 | 4DPAIPN | NIMBA | DMSO | 24 | 86 (78)e |
[1] |
(a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Soc. Rev. 2011, 40, 2435.
pmid: 27747133 |
(b) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
pmid: 27747133 |
|
(c) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009, 48, 6201.
pmid: 27747133 |
|
(d) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
pmid: 27747133 |
|
(e) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739.
pmid: 27747133 |
|
(f) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
pmid: 27747133 |
|
(g) Chen, K.-H.; Li, H.-R.; He, L.-N. Chin. J. Org. Chem. 2020, 40, 2195 (in Chinese).
pmid: 27747133 |
|
( 陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
doi: 10.6023/cjoc202004030 pmid: 27747133 |
|
(h) Guo, X.; Wang, Y.-Z.; Chen, J.; Li, G.-Q.; Xia, J.-B. Chin. J. Org. Chem. 2020, 40, 2208 (in Chinese).
pmid: 27747133 |
|
( 郭霄, 王亚洲, 陈洁, 李公强, 夏纪宝, 有机化学, 2020, 40, 2208.)
doi: 10.6023/cjoc202002032 pmid: 27747133 |
|
(i) Ye, J.-H.; Ju, Tao.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
pmid: 27747133 |
|
(j) Dou, Q.; Wang, T.-M.; Li, S.-F.; Fang, L.-J.; Zhai, H.-B.; Cheng, B. Chin. J. Org. Chem. 2022, 42, 4257 (in Chinese).
pmid: 27747133 |
|
( 窦谦, 汪太民, 李嗣锋, 房丽晶, 翟宏斌, 程斌, 有机化学, 2022, 42, 4257.)
doi: 10.6023/cjoc202206003 pmid: 27747133 |
|
(k) Wu, Z.-Q.; Fan, Z.-N.; Xi, C.-J. Chin. Sci. Bull. 2021, 66, 773.
pmid: 27747133 |
|
[2] |
(a) Han, İ. M.; Küçükgüzel, G. Ş. Mini-Rev. Med. Chem. 2020, 20, 1300.
|
(b) Gouda, A. M.; Beshr, E. A.; Almalki, F. A.; Halawah, H. H.; Taj, B. F.; Alnafaei, A. F.; Alharazi, R. S.; Kazi, W. M.; AlMatrafi, M. M. Bioorg. Chem. 2019, 92, 103224.
|
|
[3] |
(a) Zhong, J.-S.; Yang, Z.-X.; Ding, C.-L.; Huang, Y.-F.; Zhao, Y.; Yan, H.; Ye, K.-Y. J. Org. Chem. 2021, 86, 16162.
pmid: 26991022 |
(b) Ran, C.-K.; Niu, Y.-N.; Song, L.; Wei, M.-K.; Cao, Y.-F.; Luo, S.-P.; Yu, Y.-M.; Liao, L.-L.; Yu, D.-G. ACS Catal. 2022, 12, 18.
pmid: 26991022 |
|
(c) Yang, D.-T.; Zhu, M.; Schiffer, Z. J.; Williams, K.; Song, X.; Liu, X.; Manthiram, K. ACS Catal. 2019, 9, 4699.
pmid: 26991022 |
|
(d) Correa, A.; León, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062.
pmid: 26991022 |
|
(e) Li, W.-D.; Wu, Y.; Li, S.-J.; Jiang, Y.-Q.; Li, Y.-L.; Lan, Y.; Xia, J.-B. J. Am. Chem. Soc. 2022, 144, 8551.
pmid: 26991022 |
|
(f) Grigg, R. D.; Rigoli, J. W.; Van Hoveln, R.; Neale, S.; Schomaker, J. M. Chem.-Eur. J. 2012, 18, 9391.
pmid: 26991022 |
|
(g) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem., Int. Ed. 2016, 55, 5053.
doi: 10.1002/anie.201600697 pmid: 26991022 |
|
(h) Wang, L.; Li, T.; Perveen, S.; Zhang, S.; Wang, X.; Ouyang, Y.; Li, P. Angew. Chem., Int. Ed. 2022, 61, e202213943.
pmid: 26991022 |
|
(i) Yang, H.-P.; Lin, Q.; Zhang, H.-W.; Li, G.-D.; Fan, L.-D.; Chai, X.-Y.; Zhang, Q.-L.; Liu, J.-H.; He, C.-X. Chem. Commun. 2018, 54, 4108.
pmid: 26991022 |
|
(j) Chen, B.-L.; Zhu, H.-W.; Xiao, Y.; Sun, Q.-L.; Wang, H.; Lu, J.-X. Electrochem. Commun. 2014, 42, 55.
pmid: 26991022 |
|
(k) Jing, K.; Wei, M.-K.; Yan, S.-S.; Liao, L.-L.; Niu, Y.-N.; Luo, S.-P.; Yu, B.; Yu, D.-G. Chin. J. Catal. 2022, 43, 1667.
doi: 10.1016/S1872-2067(21)63859-7 pmid: 26991022 |
|
(l) Yan, S.-S.; Liu, S.-H.; Chen, L.; Bo, Z.-Y.; Jing, K.; Gao, T.-Y.; Yu, B.; Lan, Y.; Luo, S.-P.; Yu, D.-G. Chem 2021, 7, 3099.
pmid: 26991022 |
|
[4] |
(a) Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B. J. Am. Chem. Soc. 2019, 141, 11393.
pmid: 31775498 |
(b) Ishida, N.; Masuda, Y.; Imamura, Y.; Yamazaki, K.; Murakami, M. J. Am. Chem. Soc. 2019, 141, 19611.
doi: 10.1021/jacs.9b12529 pmid: 31775498 |
|
(c) Lee, H.-J.; Kim, H.; Kim, D.-P. Chem.-Eur. J. 2019, 25, 11641.
pmid: 31775498 |
|
(d) Faigl, F.; Schlosser, M. Tetrahedron Lett. 1991, 32, 3369.
pmid: 31775498 |
|
[5] |
(a) Jin, Y.; Caner, J.; Nishikawa, S.; Toriumi, N.; Iwasawa, N. Nat. Commun. 2022, 13, 7584.
pmid: 22779807 |
(b) Shao, P.; Wang, S.; Chen, C.; Xi, C. Org. Lett. 2016, 18, 2050.
pmid: 22779807 |
|
(c) Martin, A. C.; Rogers, J. A.; Batsomboon, P.; Morrison, A. E.; Ramsubhag, R. R.; Popp, B. V.; Dudley, G. B. ACS Omega 2021, 6, 30108.
doi: 10.1021/acsomega.1c04943 pmid: 22779807 |
|
(d) Saini, S.; Singh, H.; Prajapati, P. K.; Sinha, A. K.; Jain, S. L. ACS Sustainable Chem. Eng. 2019, 7, 11313.
pmid: 22779807 |
|
(e) Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900.
doi: 10.1021/ja3045053 pmid: 22779807 |
|
(f) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
pmid: 22779807 |
|
(g) Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J. Am. Chem. Soc. 2017, 139, 12161.
pmid: 22779807 |
|
(h) Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. J. Am. Chem. Soc. 2018, 140, 3198.
pmid: 22779807 |
|
(i) Greenhalgh, M. D.; Kolodziej, A.; Sinclair, F.; Thomas, S. P. Organometallics 2014, 33, 5811.
pmid: 22779807 |
|
(j) Kawashima, S.; Aikawa, K.; Mikami, K. Eur. J. Org. Chem. 2016, 2016, 3166.
pmid: 22779807 |
|
(k) Murata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.; Iwasawa, N. Chem. Commun. 2017, 53, 3098.
pmid: 22779807 |
|
[6] |
(a) Niu, Y.-N.; Jin, X.-H.; Liao, L.-L.; Huang, H.; Yu, B.; Yu, Y.-M.; Yu, D.-G. Sci. China: Chem. 2021, 64, 1164.
pmid: 33561344 |
(b) Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Nat. Commun. 2019, 10, 3592.
pmid: 33561344 |
|
(c) Ju, T.; Zhou, Y.-Q.; Cao, K.-G.; Fu, Q.; Ye, J.-H.; Sun, G.-Q.; Liu, X.-F.; Chen, L.; Liao, L.-L.; Yu, D.-G. Nat. Catal. 2021, 4, 304.
pmid: 33561344 |
|
(d) Senboku, H.; Komatsu, H.; Fujimura, Y.; Tokuda, M. Synlett 2001, 2001, 0418.
pmid: 33561344 |
|
(e) Knowlden, S. W.; Popp, B. V. Organometallics 2022, 41, 1883.
pmid: 33561344 |
|
(f) Zhou, C.; Li, M.; Sun, J.; Cheng, J.; Sun, S. Org. Lett. 2021, 23, 2895.
pmid: 33561344 |
|
(g) Butcher, T. W.; McClain, E. J.; Hamilton, T. G.; Perrone, T. M.; Kroner, K. M.; Donohoe, G. C.; Akhmedov, N. G.; Petersen, J. L.; Popp, B. V. Org. Lett. 2016, 18, 6428.
pmid: 33561344 |
|
(h) Xu, P.; Wang, S.; Xu, H.; Liu, Y.-Q.; Li, R.-B.; Liu, W.-W.; Wang, X.-Y.; Zou, M.-L.; Zhou, Y.; Guo, D.; Zhu, X. ACS Catal. 2023, 13, 2149.
pmid: 33561344 |
|
(i) Wang, H.; Gao, Y.; Zhou, C.; Li, G. J. Am. Chem. Soc. 2020, 142, 8122.
doi: 10.1021/jacs.0c03144 pmid: 33561344 |
|
(j) Zhang, W.; Lin, S. J. Am. Chem. Soc. 2020, 142, 20661.
doi: 10.1021/jacs.0c08532 pmid: 33561344 |
|
(k) Benedetti Vega, K.; Campos Delgado, J. A.; Pugnal, L. V. B. L.; König, B.; Menezes Correia, J. T.; Weber Paixão, M. Chem.-Eur. J. 2023, 29, e202203625.
pmid: 33561344 |
|
(l) Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 10915.
pmid: 33561344 |
|
(m) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948.
doi: 10.1002/anie.201803186 pmid: 33561344 |
|
(n) Wang, H.; Lin, M.-Y.; Fang, H.-J.; Chen, T.-T.; Lu, J.-X. Chin. J. Chem. 2007, 25, 913.
pmid: 33561344 |
|
(o) Perrone, T. M.; Gregory, A. S.; Knowlden, S. W.; Ziemer, N. R.; Alsulami, R. N.; Petersen, J. L.; Popp, B. V. ChemCatChem 2019, 11, 5814.
doi: 10.1002/cctc.201901197 pmid: 33561344 |
|
(p) Louvel, D.; Souibgui, A.; Taponard, A.; Rouillon, J.; ben Mosbah, M.; Moussaoui, Y.; Pilet, G.; Khrouz, L.; Monnereau, C.; Vantourout, J. C.; Tlili, A. Adv. Synth. Catal. 2022, 364, 139.
pmid: 33561344 |
|
(q) Shao, P.; Wang, S.; Chen, C.; Xi, C. Chem. Commun. 2015, 51, 6640.
pmid: 33561344 |
|
(r) Dérien, S.; Clinet, J.-C.; Duñach, E.; Périchon, J. Tetrahedron 1992, 48, 5235.
pmid: 33561344 |
|
(s) Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 17220.
pmid: 33561344 |
|
(t) Liao, L.-L.; Cao, G.-M.; Jiang, Y.-X.; Jin, X.-H.; Hu, X.-L.; Chruma, J. J.; Sun, G.-Q.; Gui, Y.-Y.; Yu, D.-G. J. Am. Chem. Soc. 2021, 143, 2812.
doi: 10.1021/jacs.0c11896 pmid: 33561344 |
|
[7] |
Zhang, B.; Yi, Y.; Wu, Z.-Q.; Chen, C.; Xi, C. Green Chem. 2020, 22, 5961.
|
[8] |
(a) Shi, A.; Sun, K.; Chen, X.; Qu, L.; Zhao, Y.; Yu, B. Org. Lett. 2022, 24, 299.
|
(b) Lu, Y.-H.; Mu, S.-Y.; Jiang, J.; Wu, C.; Zhou, M.-H.; Ouyang, W.-T.; He, W.-M. Green Chem. 2023, 25, 5539.
|
|
(c) Zeng, F. L.; Zhu, H. L.; Wang, R. N.; Yuan, X. Y.; Sun, K.; Qu, L. B.; Chen, X. L.; Yu, B. Chin. J. Catal. 2023, 46, 157.
|
|
[9] |
Hahm, H.; Kim, J.; Ryoo, J. Y.; Han, M. S.; Hong, S. Org. Biomol. Chem. 2021, 19, 6301.
|
[10] |
Wu, Z.; Gockel, S. N.; Hull, K. L. Nat. Commun. 2021, 12, 5956.
|
[11] |
Cai, S.-Y.; Zhao, X.-Y.; Wang, X.-B.; Liu, Q.-S.; Li, Z.-S.; Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050.
|
[12] |
Yuan, P.-F.; Y, Z.; Zhang, S.-S.; Zhu, C.-M.; Yang, X.-L.; Meng, Q.-Y. Angew. Chem., Int. Ed. 2023, e202313030.
|
[13] |
Liao, L.-L.; Cao, G.-M.; Ye, J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G. J. Am. Chem. Soc. 2018, 140, 17338.
doi: 10.1021/jacs.8b08792 pmid: 30518213 |
[14] |
Chang, J.; Xie, W.; Wang, L.; Ma, N.; Cheng, S.; Xie, J. Eur. J. Med. Chem. 2006, 41, 397.
|
[15] |
Hang, W.; Li, D.; Zou, S.; Xi, C. J. Org. Chem. 2023, 88, 5007.
|
[16] |
Babin, V.; Talbot, A.; Labiche, A.; Destro, G.; Del Vecchio, A.; Elmore, C. S.; Taran, F.; Sallustrau, A.; Audisio, D. ACS Catal. 2021, 11, 2968.
|
[17] |
Bazzi, S.; Schulz, E.; Mellah, M. Org. Lett. 2019, 21, 10033.
|
[18] |
Niwayama, S.; Cho, H.; Lin, C. Tetrahedron Lett. 2008, 49, 4434.
|
[19] |
Linhardt, R. J.; Murr, B. L.; Montgomery, E.; Osby, J.; Sherbine, J. J. Org. Chem. 1982, 47, 2242.
|
[20] |
Gevorgyan, A.; Obst, M. F.; Guttormsen, Y.; Maseras, F.; Hopmann, K. H.; Bayer, A. Chem. Sci. 2019, 10, 10072.
doi: 10.1039/c9sc02467k pmid: 32055361 |
[21] |
Pquette, L. A.; Maynard, G. D. J. Org. Chem. 1989, 54, 5054.
|
[22] |
Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem. 1994, 59, 6095.
|
[1] | 姜晓琳, 王超洋, 武利园, 李跃辉. 含咔唑结构的小分子及聚合物催化二氧化碳转化研究进展[J]. 有机化学, 2024, 44(5): 1423-1444. |
[2] | 夏坤, 张开发, Sher Wali Khan, 阿布力米提•阿布都卡德尔. 二氧化碳参与的三组分偶联反应进展[J]. 有机化学, 2024, 44(5): 1506-1525. |
[3] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[4] | 樊思捷, 董武恒, 梁彩云, 王贵超, 袁瑶, 尹作栋, 张兆国. 可见光诱导的自由基环化反应构建4-芳基-1,2-二氢萘类化合物[J]. 有机化学, 2023, 43(9): 3277-3286. |
[5] | 廖旭, 王泽宇, 唐武飞, 林金清. 多孔有机聚合物用于化学固定二氧化碳的研究进展[J]. 有机化学, 2023, 43(8): 2699-2710. |
[6] | 刘露, 张曙光, 胡仁威, 赵晓晓, 崔京南, 贡卫涛. 基于多羟基柱[5]芳烃的酚醛多孔聚合物合成及CO2催化转化[J]. 有机化学, 2023, 43(8): 2808-2814. |
[7] | 宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建. 利用硅氢加成反应催化转化二氧化碳研究进展[J]. 有机化学, 2023, 43(6): 2068-2080. |
[8] | 潘永周, 蒙秀金, 王迎春, 何慕雪. 电化学固定CO2构建羧酸衍生物的研究进展[J]. 有机化学, 2023, 43(4): 1416-1434. |
[9] | 刘桂杰, 付正强, 陈飞, 徐彩霞, 李敏, 刘宁. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635. |
[10] | 陈祥, 欧阳文韬, 李潇, 何卫民. 可见光诱导有机光催化合成二氟乙基苯并噁嗪[J]. 有机化学, 2023, 43(12): 4213-4219. |
[11] | 苏沛锋, 倪金煜, 柯卓锋. 二氧化碳硅氢化及相关转化的均相催化体系研究进展[J]. 有机化学, 2023, 43(10): 3526-3543. |
[12] | 黄燕, 张谦, 詹乐武, 侯静, 李斌栋. 可见光诱导甲酸盐参与的烯烃氢羧化反应[J]. 有机化学, 2022, 42(8): 2568-2573. |
[13] | 徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis Verpoort. ZnO/离子液体体系催化常压二氧化碳合成β-羰基氨基甲酸酯[J]. 有机化学, 2022, 42(8): 2542-2550. |
[14] | 陈飞, 陶晟, 刘宁, 代斌. CNN型双核Cu(I)配合物室温催化固定CO2的直接羧基化反应[J]. 有机化学, 2022, 42(8): 2471-2480. |
[15] | 高润烨, 左玲玲, 王芳, 李传莹, 蒋华江, 李品华, 王磊. 无外加光催化剂下可见光促进的可控有机反应进展[J]. 有机化学, 2022, 42(7): 1883-1903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||