Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (8): 3242-3248.DOI: 10.6023/cjoc202102007 Previous Articles Next Articles
ARTICLES
收稿日期:
2021-02-01
修回日期:
2021-03-16
发布日期:
2021-05-08
通讯作者:
盛卫坚
Keying Du, Zhanming Zhang, Weijian Sheng()
Received:
2021-02-01
Revised:
2021-03-16
Published:
2021-05-08
Contact:
Weijian Sheng
Share
Keying Du, Zhanming Zhang, Weijian Sheng. Copper-Catalyzed the Synthesis of 3-Trifluoromethylchromone via Trifluoromethyl Radical Addition Tandem Cyclization Reaction of 2-Hydroxyphenyl Enaminones[J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3242-3248.
Entry | Catalyst | Oxidant (equiv.) | Solvent | Temp./℃ | Yield b/% |
---|---|---|---|---|---|
1 | Cu(OAc)2 | TBHP (2) | DMSO | 100 | 55 |
2 | Cu(OTf)2 | TBHP (2) | DMSO | 100 | 41 |
3 | CuI | TBHP (2) | DMSO | 100 | 45 |
4 | CuBr | TBHP (2) | DMSO | 100 | 43 |
5 | — | TBHP (2) | DMSO | 100 | 17 |
6 | Cu(OAc)2 | DTBP (2) | DMSO | 100 | 38 |
7 | Cu(OAc)2 | BPO (2) | DMSO | 100 | 40 |
8 | Cu(OAc)2 | TBHP (2) | MeCN | 100 | 50 |
9 | Cu(OAc)2 | TBHP (2) | DMF | 100 | Trace |
10 | Cu(OAc)2 | TBHP (2) | NMP | 100 | Trace |
11 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 100 | 58 |
12 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 80 | 58 |
13 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 50 | 62 |
14 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 25 | 49 |
15 | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan | 50 | 65 |
16c | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 67 |
17c,d | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 70 |
18c,d,e | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 54 |
19c,d,f | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 55 |
Entry | Catalyst | Oxidant (equiv.) | Solvent | Temp./℃ | Yield b/% |
---|---|---|---|---|---|
1 | Cu(OAc)2 | TBHP (2) | DMSO | 100 | 55 |
2 | Cu(OTf)2 | TBHP (2) | DMSO | 100 | 41 |
3 | CuI | TBHP (2) | DMSO | 100 | 45 |
4 | CuBr | TBHP (2) | DMSO | 100 | 43 |
5 | — | TBHP (2) | DMSO | 100 | 17 |
6 | Cu(OAc)2 | DTBP (2) | DMSO | 100 | 38 |
7 | Cu(OAc)2 | BPO (2) | DMSO | 100 | 40 |
8 | Cu(OAc)2 | TBHP (2) | MeCN | 100 | 50 |
9 | Cu(OAc)2 | TBHP (2) | DMF | 100 | Trace |
10 | Cu(OAc)2 | TBHP (2) | NMP | 100 | Trace |
11 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 100 | 58 |
12 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 80 | 58 |
13 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 50 | 62 |
14 | Cu(OAc)2 | TBHP (2) | 1,1-Dioxothiolan | 25 | 49 |
15 | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan | 50 | 65 |
16c | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 67 |
17c,d | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 70 |
18c,d,e | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 54 |
19c,d,f | Cu(OAc)2 | TBHP (3) | 1,1-Dioxothiolan/H2O | 50 | 55 |
[1] |
(a) Feng, L.; Maddox, M. M.; Alam, M. Z.; Tsutsumi, L. S.; Narula, G.; Bruhn, D. F.; Wu, X.; Sandhaus, S.; Lee, R. B.; Simmons, C. J.; Tse-Dinh, Y. C.; Hurdle, J. G.; Lee, R. E.; Sun, D. J. Med. Chem. 2014, 57, 8398.
doi: 10.1021/jm500853v pmid: 25238443 |
(b) Matin, A.; Gavande, N.; Kim, M. S.; Yang, N. X.; Salam, N. K.; Hanrahan, J. R.; Roubin, R. H.; Hibbs, D. E. J. Med. Chem. 2009, 52, 6835.
doi: 10.1021/jm900964r pmid: 25238443 |
|
(c) Zhou, T.; Shi, Q.; Lee, K. H. Tetrahedron Lett. 2010, 51, 4382.
doi: 10.1016/j.tetlet.2010.06.058 pmid: 25238443 |
|
(d) Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Eur. J. Med. Chem. 2014, 78, 340.
doi: 10.1016/j.ejmech.2014.03.047 pmid: 25238443 |
|
(e) Lan, J. S.; Xie, S. S.; Huang, M.; Hu, Y. J.; Kong, L. Y.; Wang, X. B. MedChemComm 2015, 6, 1293.
doi: 10.1039/C5MD00124B pmid: 25238443 |
|
(f) Gobbi, S.; Hu, Q.; Zimmer, C., Engel, M.; Belluti, F.; Rampa, A.; Hartmann, R. W.; Bisi, A. J. Med. Chem. 2016, 59, 2468.
doi: 10.1021/acs.jmedchem.5b01609 pmid: 25238443 |
|
[2] |
(a) Moriarty, R. M.; Prakash, O. J. Heterocycl. Chem. 1985, 22, 583.
doi: 10.1002/jhet.v22:2 |
(b) Klier, L.; Bresser, T.; Nigst, T. A.; Karaghiosoff, K.; Knochel, P. J. Am. Chem. Soc. 2012, 134, 13584.
doi: 10.1021/ja306178q |
|
(c) Inna, V.; Shlomo R. J. Org. Chem. 2014, 79, 7261.
doi: 10.1021/jo5009542 |
|
(d) Zhao, W. N.; Xie, P.; Bian, Z. G.; Zhou, A. H.; Ge, H. B.; Zhang, M.; Ding, Y. C.; Zheng, L. J. Org. Chem. 2015, 80, 9167.
doi: 10.1021/acs.joc.5b01602 |
|
(e) Wan, J. P.; Zhong, S.; Guo, Y.; Wei, L. Eur. J. Org. Chem. 2017, 4401.
|
|
(f) Araujo, D. R.; Lima, Y. R.; Barcellos, A. M.; Jacob, R. G.; Silva, M. S.; Perin, G. ARKIVOC 2020, 6, 276.
|
|
[3] |
(a) Panja, S. K.; Maiti, S.; Bandyopadhyay, C. J. Chem. Res. 2010, 555.
|
(b) Akram, M. O.; Berabc, S.; Patil, N. T. Chem. Commun. 2016, 52, 12306.
doi: 10.1039/C6CC07119H |
|
(c) Joussota, J.; Schoenfeldera, A.; Larquetouxb, L.; Nicolasb, M.; Suffert, J.; Blond, G. Synthesis 2016, 48, 3364.
doi: 10.1055/s-0035-1562513 |
|
(d) Yokoe, I.; Maruyama, K.; Sugita, Y.; Harashida, T.; Shirataki, Y. Chem. Pharm. Bull. 1994, 42, 1697.
doi: 10.1248/cpb.42.1697 |
|
(e) Gudipati, R.; Kandula, V.; Raghavulu, K.; Basavaiah, K.; Yennam, S.; Behera, M. ChemistrySelect 2020, 5, 7093
doi: 10.1002/slct.v5.23 |
|
[4] |
(a) Hu, B.; Zhou, P.; Rao, K.; Yang, J.; Li, L.; Yan, S.; Yu, F. Tetrahedron Lett. 2018, 59, 1438.
doi: 10.1016/j.tetlet.2018.02.079 |
(b) He, Z. H.; Liu, W. P.; Li, Z. P. Chem. Asian J. 2011, 6, 1340.
doi: 10.1002/asia.v6.6 |
|
(c) Jiang, H. F.; Huang, W.; Yu, Y.; Yi, S. J.; Li, J. W.; Wu, W. Q. Chem. Commun. 2017, 53, 7473
doi: 10.1039/C7CC03125D |
|
[5] |
(a) Zhang, X. Z.; Ge, D. L.; Chen, S. Y.; Yu, X. Q. RSC Adv. 2016, 6, 66320.
doi: 10.1039/C6RA13303G |
(b) Yang, Z.; Hu, L.; Cao, T.; An, L.; Li, L.; Yang, T.; Zhou, C. New J. Chem. 2019, 43, 16441.
doi: 10.1039/c9nj04580e |
|
(c) Xiang, H.; Zhao, Q.; Tang, Z.; Xiao, J.; Xia, P.; Wang, C.; Yang, C.; Chen, X.; Yang, H. Org. Lett. 2017, 19, 146.
doi: 10.1021/acs.orglett.6b03441 |
|
(d) Gao, Y.; Liu, Y.; Wan, J. P. J. Org. Chem. 2019, 84, 2243.
doi: 10.1021/acs.joc.8b02981 |
|
(e) Gao, H.; Hu, B.; Dong, W. H.; Gao, X. S.; Jiang, L. L.; Xie, X. M.; Zhang, Z. G. ACS Omega 2017, 2, 3168
doi: 10.1021/acsomega.7b00383 |
|
[6] |
(a) Schlosser, M. Angew Chem., Int. Ed. 2006, 45, 5432.
doi: 10.1002/(ISSN)1521-3773 |
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
doi: 10.1021/jm800219f |
|
(c) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
doi: 10.1021/jm1013693 |
|
(d) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
doi: 10.1039/C1CS15084G |
|
(e) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; delPozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 |
|
[7] |
(a) Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.
doi: 10.1016/j.jfluchem.2009.09.007 |
(b) Choi, S.; Kim, Y. J.; Kim, S. M.; Yang, J. W.; Kim, S. W.; Cho, E. J. Nat. Commun. 2014, 5, 4881.
doi: 10.1038/ncomms5881 |
|
(c) Feng, Z.; Min, Q. Q.; Zhao, H. Y.; Gu, J. W.; Zhang, X. G. Angew. Chem., Int. Ed. 2015, 54, 1270.
doi: 10.1002/anie.201409617 |
|
(d) Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; Noel, T. Angew. Chem., Int. Ed. 2016, 55, 15549.
doi: 10.1002/anie.201608297 |
|
(e) Thomas, R.; Eugen, L.; Christian, K.; Oliver, R. ACS Catal. 2018, 8, 3950
doi: 10.1021/acscatal.8b00847 |
|
[8] |
(a) Satoshi, M.; Oscar, G. L.; Engle, K. M.; Stefan, V.; Katherine, W.; Gerasimos, R.; Veronique, G. Chem.-Eur. J. 2012, 18, s8583.
pmid: 29754491 |
(b) Gao, B.; Zhao, Y. C.; Ni, C. F.; Hu, J. B. Org. Lett. 2014, 16, 102.
doi: 10.1021/ol403083e pmid: 29754491 |
|
(c) Li, Y. W.; Lu, Y.; Qiu, G. Y. S.; Ding, Q. P. Org. Lett. 2014, 16, 4240.
doi: 10.1021/ol501939m pmid: 29754491 |
|
(d) Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Adv. Synth. Catal. 2015, 357, 3447.
doi: 10.1002/adsc.201500631 pmid: 29754491 |
|
(e) Gou, B. Q.; Yang, C.; Zhang, L.; Xia, W. J. Acta Chim. Sinica 2017, 75, 66. (in Chinese)
doi: 10.6023/A16070341 pmid: 29754491 |
|
(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
doi: 10.6023/A16070341 pmid: 29754491 |
|
(f) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522.
doi: 10.1021/jacs.8b02650 pmid: 29754491 |
|
(g) Wang, Q.; Gao, K. C.; Zou, J. P.; Zeng, R. S. Chin. J. Org. Chem. 2018, 38, 863. (in Chinese)
doi: 10.6023/cjoc201710025 pmid: 29754491 |
|
(王清, 高克成, 邹建平, 曾润生, 有机化学, 2018, 38, 863.)
doi: 10.6023/cjoc201710025 pmid: 29754491 |
|
(h) Ge, J. Y.; Ding, Q. P.; Wang, X. H.; Peng, Y. Y. J. Org. Chem. 2020, 85, 7658.
doi: 10.1021/acs.joc.9b03470 pmid: 29754491 |
|
[9] |
(a) Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 2037.
doi: 10.1039/c3cc39235j |
(b) Ge, G. C.; Huang, X. J.; Ding, C. H.; Wan, S. L.; Dai, L. X.; Hou, X. L. Chem. Commun. 2014, 50, 3048.
doi: 10.1039/c3cc49059a |
|
(c) Asano, M.; Tomita, R.; Koike, T.; Akita, M. J. Fluorine Chem. 2015, 179, 83.
doi: 10.1016/j.jfluchem.2015.07.020 |
|
(d) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144
doi: 10.1002/anie.v53.28 |
|
[10] |
(a) Pandey, V. K.; Anbarasan, P. RSC Adv. 2016, 6, 18525.
doi: 10.1039/C5RA27128B |
(b) Ye, Y. D.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.
doi: 10.1021/ol202174a |
|
(c) Hafner, A.; Brase, S. Adv. Synth. Catal. 2011, 353, 163044.
|
|
(d) Wu, Y. B.; Lu, G. P.; Yuan, T.; Xu, Z. B.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668
doi: 10.1039/C6CC08178A |
|
[11] |
(a) Shen, W. G.; Wu, Q. Y.; Gong, X. Y.; Aoa, G. Z.; Liu, F. Green Chem. 2019, 21, 2983.
doi: 10.1039/C9GC00886A pmid: 30289263 |
(b) Cao, X. H.; Pan, X. Q.; Zhou, P. J.; Zou, J. P.; Asekun, O. T. Chem. Commun. 2014, 50, 3359.
doi: 10.1039/c3cc49689a pmid: 30289263 |
|
(c) Wei, W., Wen, J. W.; Yang, D. S.; Liu, X. X.; Guo, M. Y.; Dong, R. M.; Wang, H. J. Org. Chem. 2014, 79, 4225.
doi: 10.1021/jo500515x pmid: 30289263 |
|
(d) Zhang, K.; Xu, X. H.; Qing, F. L. J. Org. Chem. 2015, 80, 7658.
doi: 10.1021/acs.joc.5b01295 pmid: 30289263 |
|
(e) Yang, B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 1906.
doi: 10.1021/acs.orglett.5b00601 pmid: 30289263 |
|
(f) Tang, L.; Yang, Z.; Chang, X. P.; Jiao, J. C.; Ma, X. T.; Rao, W. H.; Zhou, Q. J. Org. Lett. 2018, 20, 6520.
doi: 10.1021/acs.orglett.8b02846 pmid: 30289263 |
|
(g) Shi, X. L.; Li, X. W.; Ma, L. N.; Shi, D. Y. Catalysts 2019, 9, 278.
doi: 10.3390/catal9030278 pmid: 30289263 |
|
(h) Wang, N.; Gu, Q. S.; Cheng, Y. F.; Li, L.; Li, Z. L.; Guo, Z.; Liu, X. Y. Chin. J. Org. Chem. 2019, 39, 200. (in Chinese)
doi: 10.6023/cjoc201808048 pmid: 30289263 |
|
(王娜, 顾强帅, 程永峰, 李磊, 李忠良, 郭臻, 刘心元, 有机化学, 2019, 39, 200.)
doi: 10.6023/cjoc201808048 pmid: 30289263 |
|
[12] |
Friden-Saxin, M.; Seifert, T.; Landergren, M. R.; Suuronen, T.; Lahtela-Kakkonen, M.; Jarho, E. M.; Luthman, K. J. Med. Chem. 2012, 55, 7104.
doi: 10.1021/jm3005288 |
[13] |
Yu, Q.; Liu, Y. Y.; Wan, J. P. Org. Chem. Front. 2020, 7, 2770.
doi: 10.1039/D0QO00855A |
[14] |
Bichovski, P.; Haas, T. M.; Kratzert, D.; Streuff, J. Chem.-Eur. J. 2015, 21, 2339.
doi: 10.1002/chem.201405852 pmid: 25476744 |
[1] | Si Wen, Yuhao Ding, Qingyu Tian, Jin Ge, Guolin Cheng. Rhodium(III)-Catalyzed Synthesis of CF3-1H-benzo[de][1,8]naph-thyridines via C—H Activation/Annulation of Benzimidates and CF3-Imidoyl Sulfoxonium Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 291-300. |
[2] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[3] | Hu Ma, Danfeng Huang, Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu. Synthesis of 3-Trifluoromethylpyrazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3257-3267. |
[4] | Jiantao Zhang, Cong Zhang, Nuolin Mo, Jiating Luo, Lianfen Chen, Weibing Liu. Research Progress in Radical Addition Reaction of Alkenes Involving Chloroform [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3098-3106. |
[5] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[6] | Jiamin Ma, Jiaoxiong Li, Qiansen Meng, Xianghua Zeng. Advances on the Radical Sulfonation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2040-2052. |
[7] | Jing Liu, Jian Hao, Qilong Shen. Visible-Light-Promoted Direct Trifluoromethylation of Tryptophan-Containing Oligapeptides with YlideFluor [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1517-1524. |
[8] | Rui Wang, Lang Gao, Cen Zhou, Xiao Zhang. Haloperfluoroalkylation of Unactivated Terminal Alkenes over Phenylphenothiazine-Based Porous Organic Polymers [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1136-1145. |
[9] | Yasir Mumtaz, Jie Liu, Xin Huang. Copper-Promoted Trifluoromethylthiolation of Anilines with CF3SO2Na [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 679-685. |
[10] | Ning Liu, Xiaodan Cuan, Hui Li, Xiyan Duan. Progress in the Study of α-Functionalization of Enaminone [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 602-621. |
[11] | Shuyong Song, Senmiao Xu. Recent Progress in Selective C-F Bond Activation of Trifluoromethyl Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 411-425. |
[12] | Binghao Huo, Conghui Guo, Zhanhui Xu. Mn(acac)3 Promoted Radical Oxidative Coupling Reaction of Enol Esters with Phosphites to Synthesize β-Ketophosphonates [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3989-3996. |
[13] | Jiajie Zhu, Yi Wan, Qiyang Yuan, Jinlian Wei, Yongqiang Zhang. Research of Visible Light/Lewis Base Dual Catalytic Defluorinative Silylation of Trifluoromethyl-Substituted Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3623-3634. |
[14] | Zhaoming Hu, Jihong Wu, Jingjing Wu, Fanhong Wu. Research Progress on Direct Trifluoromethylselenylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 36-56. |
[15] | Yun Shi, Ting Xiao, Dong Xia, Wenchao Yang. SCF3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2715-2727. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||