Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (2): 409-420.DOI: 10.6023/cjoc202309011 Previous Articles Next Articles
REVIEWS
黄净a,b, 杨毅华b, 张占辉a,*(), 刘守信b,*()
收稿日期:
2023-09-11
修回日期:
2023-10-23
发布日期:
2023-10-30
基金资助:
Jing Huanga,b, Yihua Yangb, Zhanhui Zhanga(), Shouxin Liub()
Received:
2023-09-11
Revised:
2023-10-23
Published:
2023-10-30
Contact:
E-mail: Supported by:
Share
Jing Huang, Yihua Yang, Zhanhui Zhang, Shouxin Liu. Recent Progress on Green Methods and Technologies for Efficient Formation of Amide Bonds[J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 409-420.
[1] |
Marchetti, P. M.; Richardson, S. M.; Kariem, N. M.; Campopiano, D. J. Med. Chem. Commun. 2019, 10, 1192.
doi: 10.1039/C9MD00063A |
[2] |
Mahesh, S; Tang, K. C.; Raj, M. Molecule. 2018, 23, 2615.
doi: 10.3390/molecules23102615 |
[3] |
(a) Santos, A. S.; Silva, A. M. S.; Marques, M. M. B. Eur. J. Org. Chem. 2020, 2501.
|
(b) Dorr, B. M.; Fuerst, D. E. Curr. Opin. Chem. Biol. 2018, 43, 127.
doi: 10.1016/j.cbpa.2018.01.008 |
|
[4] |
Papadopoulos, L.; Kluge, M.; Bikiaris, D. N.; Robert, T. Polymer. 2020, 12, 980.
|
[5] |
Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. Nat. Catal. 2019, 2, 10.
doi: 10.1038/s41929-018-0211-5 |
[6] |
Gooßen, L. J.; Ohlmann, D. M.; Lange, P. P. Synthesi. 2009, 160.
|
[7] |
(a) Bannister, R. B.; Brookes, M. H.; Evans, G. R.; Katz, R. B.; Tyrrell, N. D. Org. Process. Res. Dev. 2000, 4, 467.
doi: 10.1021/op000059q pmid: 18306200 |
(b) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.
pmid: 18306200 |
|
(c) Arnold, K.; Batsanov, A. S.; Davies, B.; Whiting, A. Green Chem. 2008, 10, 124.
doi: 10.1039/B712008G pmid: 18306200 |
|
(d) Arnold, K.; Davies, B.; Hérault, D.; Whiting, A. Angew. Chem. Int. Ed. 2008, 47, 2673.
doi: 10.1002/anie.200705643 pmid: 18306200 |
|
(e) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. Chem. Commun. 2010, 46, 1813.
doi: 10.1039/B923093A pmid: 18306200 |
|
(f) Charville, H.; Jackson, D.; Hodges, G.; Whiting, A.; Wilson, M. R. Eur. J. Org. Chem. 2011, 5981.
pmid: 18306200 |
|
(g) Liu, S.; Yang, Y.; Liu, X.; Fardousi, F. K.; Batsanov, A. S.; Whiting, A. Eur. J. Org. Chem. 2013, 5692.
pmid: 18306200 |
|
(h) Fatemi, S.; Gernignon, N.; Hall, D. G. Green Chem. 2015, 17, 4016.
doi: 10.1039/C5GC00659G pmid: 18306200 |
|
(i) Sabatini, M. T.; Boulton, L. T.; Sheppard, T. D. Sci. Adv. 2017, 3, e1701028.
pmid: 18306200 |
|
[8] |
(a) Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. Chem. Commun. 2012, 48, 666.
doi: 10.1039/C1CC15210F pmid: 23013456 |
(b) Lundberg, H.; Tinnis, F.; Adolfsson, H. Chem. Eur. J. 2012, 18, 3822.
doi: 10.1002/chem.v18.13 pmid: 23013456 |
|
(c) Lundberg, H.; Tinnis, F.; Adolfsson, H. Synlet. 2012, 23, 2201.
doi: 10.1055/s-00000083 pmid: 23013456 |
|
(d) Lundberg, H.; Adolfsson, H. ACS Catal. 2015, 5, 3271.
doi: 10.1021/acscatal.5b00385 pmid: 23013456 |
|
(e) Lundberg, H.; Tinnis, F.; Adolfsson, H. Appl. Organomet. Chem. 2019, 33, 1.
pmid: 23013456 |
|
(f) Gernigon, N.; Al-Zoubi, R. M.; Hall, D. G. J. Org. Chem. 2012, 77, 8386.
doi: 10.1021/jo3013258 pmid: 23013456 |
|
[9] |
Gabriel, C. M.; Keener, M.; Gallou, F.; Lipshutz, B. H. Org. Lett. 2015, 17, 3968.
doi: 10.1021/acs.orglett.5b01812 |
[10] |
Arnold F. H. Angew. Chem. Int. Ed. 2019, 58, 2.
doi: 10.1002/anie.v58.1 |
[11] |
Lubberink, M.; Finnigan, W.; Flitsch, S. L. Green Chem. 2023, 25, 2958.
doi: 10.1039/D3GC00456B |
[12] |
Bruggink, A.; Roos, E. C.; Vroom, E. D. Org. Process Res. Dev. 1998, 2, 128.
doi: 10.1021/op9700643 |
[13] |
(a) Kobayashi, M.; Shimizu, S. Nat. Biotechnol. 1998, 16, 733.
pmid: 9702770 |
(b) Bering, L.; Craven, E. J.; Thomas, S. A. S.; Shepherd, S. A.; Micklefield, J. Nat. Commun. 2022, 13, 1.
doi: 10.1038/s41467-021-27699-2 pmid: 9702770 |
|
[14] |
(a) Contente, M. L.; Farris, S.; Tamborini, L.; Molinari, F.; Paradisi, F. Green Chem. 2019, 21, 3263.
doi: 10.1039/c9gc01374a |
(b) Contente, M. L.; Padrosa, D. R.; Molinari, F.; Paradisi, F. Nat. Catal. 2020, 3, 1020.
doi: 10.1038/s41929-020-00539-0 |
|
[15] |
(a) Winkler, M.; Ling, J. G. ChemCatChe. 2022, 14, e202200441.
pmid: 32337091 |
(b) Schnepel, C.; Pérez, L. R.; Yu, Y. Q.; Angelastro, A.; Heath, R. S.; Lubberink, M; Falcioni, F.; Mulholland, K.; Hayes, M. A.; Turner, N. J.; Flitsch, S. L. Nat. Catal. 2023, 6, 89.
doi: 10.1038/s41929-022-00889-x pmid: 32337091 |
|
(c) Petchey, M. R.; Rowlinson, B.; Lloyd, R. C.; Fairlamband, I. J. S.; Grogan, G. ACS Catal. 2020, 10, 4659.
doi: 10.1021/acscatal.0c00929 pmid: 32337091 |
|
(d) Winn, M.; Rowlinson, M.; Wang, F.; Bering, L.; Francis, D.; Levy, C. Micklefield J. Nature 2021, 593, 391.
doi: 10.1038/s41586-021-03447-w pmid: 32337091 |
|
(e) Winn, M.; Richardson, S. M.; Campopiano, D. J.; Micklefield, J. Curr. Opin. Chem. Biol. 2020, 55, 77.
doi: 10.1016/j.cbpa.2019.12.004 pmid: 32337091 |
|
[16] |
Qvit N., Rubin S. J. S. Curr. Top. Med. Chem. 2020, 20, 2903.
doi: 10.2174/156802662032201118092318 pmid: 33297905 |
[17] |
Jensen, S.M.; Potts, G.K.; Ready, D.B.; Patterson, M. J. Front. Immunol. 2018, 9, 2697.
doi: 10.3389/fimmu.2018.02697 |
[18] |
Jeong, W.J.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.; Hong, S. Nano Convergenc. 2018, 5, 38.
doi: 10.1186/s40580-018-0170-1 |
[19] |
Lee, J.; Lee, H.; Kim, J.; Kim, H. Macromol. Res. 2020, 28, 185.
doi: 10.1007/s13233-020-8087-z |
[20] |
Tsoras, A.N.; Champion, J. A. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 337.
doi: 10.1146/chembioeng.2019.10.issue-1 |
[21] |
Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Watkins, S.P.; Carter, L. J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey S. Albaiu D. ACS Cent. Sci.. 2020, 6, 315.
doi: 10.1021/acscentsci.0c00272 |
[22] |
Xia, S.; Liu, M.; Wang, C.; Xu, W; Lan, Q. S.; Feng, S. L.; QI, F. F.; Bao, L. L.; Du, L. Y.; Liu, S.W.; Qin, C.; Sun, F.; Shi, Z. L.; Zhu, Y.; Jiang, S. B.; Lu, L. Cell Res. 2020, 30, 343.
doi: 10.1038/s41422-020-0305-x |
[23] |
de la Torre, B. G.; Albericio, F. Molecule. 2023, 28, 1038.
doi: 10.3390/molecules28031038 |
[24] |
Martin, V.; Egelund, P. H. G.; Johansson, H.; Quement, S. T. L.; Wojcik, F.; Pedersen, D. S. RSC Adv. 2020, 10, 42457.
doi: 10.1039/D0RA07204D |
[25] |
Anselmi, M.; Stavole, P.; Boanini, E.; Bigi, A.; Juaristi, E.; Gentilucci, L. Future Med. Chem. 2020, 12, 479.
doi: 10.4155/fmc-2019-0320 |
[26] |
Pawlas, J.; Nuijens, T.; Jonas, P.; Svensson T.; Schmidt M.; Toplak, A.; Nilsson, M.; Rasmussen, J. H. Green Chem.. 2019, 21, 6451.
doi: 10.1039/c9gc03600h |
[27] |
Rasmussen J. H. Bioorg. Med. Chem. 2018, 26, 2914.
doi: 10.1016/j.bmc.2018.01.018 |
[28] |
Musaimi, A.; de la Torre, B. G.; Albericio, F. O. Green Chem. 2020, 22, 996.
doi: 10.1039/C9GC03982A |
[29] |
(a) Hojo, K.; Maeda, M.; Tanakamaru, N.; Mochida, K.; Kawasaki, K. Protein Pept. Lett. 2006, 13, 189.
doi: 10.2174/092986606775101607 |
(b) Hojo, K.; Maeda, M.; Kawasaki, K. Tetrahedro. 2004, 60, 1875.
|
|
[30] |
(a) El-Faham, A.; Albericio, F. Pept. Sci. 2020, 112, e24164.
|
(b) Knauer, S.; Koch, N.; Uth, C.; Meusinger, R.; Avrutina, O.; Kolmar, H. Angew. Chem.. Int. Ed. 2020, 59, 12984.
doi: 10.1002/anie.v59.31 |
|
[31] |
(a) Fischer M. J. E. Methods Mol. Biol. 2010, 627, 55.
doi: 10.1007/978-1-60761-670-2_3 pmid: 30562517 |
(b) Nair, M.; Johal, R.K.; Hamaia, S.W.; Best, S. M.; Cameron, R. E. Biomaterial. 2020, 254, 120109.
doi: 10.1016/j.biomaterials.2020.120109 pmid: 30562517 |
|
(c) Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Agha- mollaei, H. Int. J. Biol. Macromol. 2019, 126, 620.
doi: S0141-8130(18)32335-3 pmid: 30562517 |
|
[32] |
Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C. R.; Abou-Shehada, S.; Dunn, P. J. Green Chem. 2016, 18, 288.
doi: 10.1039/C5GC01008J |
[33] |
Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10, 31.
doi: 10.1039/B711717E |
[34] |
(a) Prat, D.; Pardigon, O.; Flemming, H. W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. Org. Process Res. Dev. 2013, 17, 1517.
doi: 10.1021/op4002565 |
(b) Diorazio, L. J.; Hose, D. R. J.; Adlington, N. K. Org. Proc. Res. Dev. 2016, 20, 760.
|
|
[35] |
MacMillan, D. S.; Murray J., Sneddon, H. F.; Jamieson, C.; Watson, A. J. B. Green Chem. 2013, 15, 596.
doi: 10.1039/c2gc36900a |
[36] |
(a) Jad, Y. E.; Acosta, G. A.; Khattab, S. N.; de la Torre, B. G.; Govender, T.; Kruger, H. G.; El-Faham, A.; Albericio, F. Org. Biomol. Chem. 2015, 13, 2393.
doi: 10.1039/C4OB02046D |
(b) Jad, Y. E.; Acosta, G. A.; Khattab, S. N.; de la Torre, B. G.; Govender, T.; Kruger, H. G.; El-Faham, A.; Albericio, F. Amino Acid. 2016, 48, 419.
doi: 10.1007/s00726-015-2095-x |
|
(c) Kumar, A.; Jad, Y. E.; El-Faham, A.; de la Torre, B. G.; Albericio, F. Tetrahedron Lett. 2017, 58, 2986.
doi: 10.1016/j.tetlet.2017.06.058 |
|
(d) Kumar, A.; Jad, Y. E.; Collins, J. M.; Albericio, F.; de la Torre, B.G. ACS Sustainable Chem. Eng. 2018, 6, 8034.
doi: 10.1021/acssuschemeng.8b01531 |
|
[37] |
(a) Lawrenson, S. B.; Arav, R.; North, M. Green Chem. 2017, 19, 1685.
doi: 10.1039/C7GC00247E |
(b) Lawrenson, S.; North, M.; Peigneguy, F.; Routledge, A. Green Chem. 2017, 19, 952.
doi: 10.1039/C6GC03147A |
|
[38] |
Lopez, J.; Pletscher, S.; Aemissegger, A.; Bucher, C.; Gallou, F. Org. Process Res. Dev. 2018, 22, 494.
doi: 10.1021/acs.oprd.7b00389 |
[39] |
Wilson, K. L.; Murray, J.; Jamieson, C.; Watson, A. J. B. Org. Biomol. Chem. 2018, 16, 2851.
doi: 10.1039/C8OB00653A |
[40] |
Sherwood, J.; De bruyn, M.; Constantinou, A.; Moity, L.; McElroy, C. R.; Farmer, T. J.; Duncan, T.; Raverty, W.; Hunt, A. J.; Clark, A. H. Chem. Commun. 2014, 50, 9650.
doi: 10.1039/C4CC04133J |
[41] |
(a) Alder, C. M.; Hayler, J. D.; Henderson, R. K.; Redman, A. M.; Shukla, L.; Shuster, L. E.; Sneddon, H. F. Green Chem. 2016, 18, 3879.
doi: 10.1039/C6GC00611F |
(b) Henderson, R. K.; Hill, A. P.; Redman, A. M.; Sneddon, H. F. Green Chem. 2015, 17, 945.
doi: 10.1039/C4GC01481B |
|
[42] |
Wade, J. D.; Mathieu, M. N.; Macris, M.; Tregear, G. W. Lett. Pept. Sci. 2000, 7, 107.
doi: 10.1023/A:1008966207751 |
[43] |
(a) Pawlas, J.; Antonic, B.; Lundqvist, M.; Svensson, T.; Finnman, J.; Rasmussen, J. H. Green Chem. 2019, 21, 2594.
doi: 10.1039/c9gc00898e |
(b) Pawlas, J.; Rasmussen, J.H. Green Chem. 2019, 21, 5990.
doi: 10.1039/c9gc02775k |
|
[44] |
(a) Pribylka, A.; Krchnak, V.; Schutznerova, E. Green Chem. 2019, 21, 775.
doi: 10.1039/c8gc03778g |
(b) Kumar, A.; Sharma, A.; de la Torre, B.G.; Albericio, F. Molecule. 2019, 24, 4004.
doi: 10.3390/molecules24214004 |
|
[45] |
Martelli, G.; Cantelmi, P.; Palladino, C.; Mattellone, A.; Corbisiero, D.; Fantoni, T.; Tolomelli, A.; Macis, M.; Ricci, A.; Cabri, W.; Ferrazzano, L. Green Chem. 2021, 23, 8096.
doi: 10.1039/D1GC02634H |
[46] |
Albericio, F.; El-Faham, A. Org. Process Res. Dev. 2018, 22, 760.
doi: 10.1021/acs.oprd.8b00159 |
[47] |
Wehrstedt, K. D.; Wandrey, P. A.; Heitkamp, D. J. Hazard. Mater. 2005, 126, 1.
pmid: 16084016 |
[48] |
Subirós-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albe- ricio, F. Chem. Eur. J. 2009, 15, 9394.
doi: 10.1002/chem.v15:37 |
[49] |
(a) El-Faham, A.; Subiros Funosas, R.; Prohens, R.; Albericio, F. Chem. Eur. J. 2009, 15, 9404.
doi: 10.1002/chem.v15:37 |
(b) Kumar, A.; Jad, Y. E.; de la Torre, B. G.; El-Faham, A.; Albericio, F. J. Pept. Sci. 2017, 23, 763.
doi: 10.1002/psc.v23.10 |
|
(c) Porte, V.; Thioloy, M.; Pigoux, T.; Metro, T.-X.; Martinez, J.; Lamaty, F. Eur. J. Org. Chem. 2016, 21, 3505.
|
|
[50] |
(a) Zhang, S.; De Leon Rodriguez, L. M.; Lacey, E.; Piggott, A. M.; Leung, I. K. H.; Brimble, M. A. Eur. J. Org. Chem. 2017, 149.
|
(b) Davison, E. K.; Cameron, A. J.; Harris, P. W. R.; Brimble, M. A. Med. Chem. Comm.. 2019, 10, 693.
doi: 10.1039/C9MD00050J |
|
[51] |
Othman, A. M.; Richard, W.; Peter, T.; De la torre, B.; Fernando, A. ChemistrySelec. 2021, 6, 2649.
doi: 10.1002/slct.v6.11 |
[52] |
(a) Dawson, P.; Muir, T.; Clark-Lewis, I.; Kent, S. Scienc. 1994, 266, 776.
doi: 10.1126/science.7973629 |
(b) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K; Liu, L. Angew. Chem. Int. Ed. 2011, 50, 7645.
doi: 10.1002/anie.v50.33 |
|
(c) Huang, Y. C.; Fang, G. M.; Liu, L. Natl. Sci. Rev. 2016, 3, 107.
doi: 10.1093/nsr/nwv072 |
|
(d) Ai, H.; Chu, G. C.; Gong, Q. Y.; Tong, Z. B.; Deng Z. H, ; Liu, X.; Yang, F.; Xu, Z. Y.; Li, J. B.; Tian, C. L.; Liu, L. J. Am. Chem. Soc. 2022, 144, 18329.
doi: 10.1021/jacs.2c06156 |
|
[53] |
Agouridas, V.; Mahdi, O. E.; Diemer, l. V.; Cargot, M. J.; Monbaliu, C. M.; Melnyk, O.; Chem. Rev. 2019, 119, 7328.
doi: 10.1021/acs.chemrev.8b00712 pmid: 31050890 |
[54] |
Baumruck, A. C.; Yang, J.; Thomas, Gerke-Fabian; Beyer, L. I.; Tietze, D.; Tietze, A. A. J. Org. Chem. 2021, 86, 1659.
doi: 10.1021/acs.joc.0c02498 pmid: 33400874 |
[55] |
(a) Zhu, S.; Guo, Z. Org. Lett. 2017, 19, 3063.
doi: 10.1021/acs.orglett.7b01132 |
(b) Liu, H.; Li, X. Acc. Chem. Res. 2018, 51, 1643.
doi: 10.1021/acs.accounts.8b00151 |
|
(c) Jin, K.; Sam, I. H.; Po, K. H. L.; Lin, D. A.; Ghazvini Zadeh, E. H.; Chen, S.; Yuan, Y.; Li, X. Nat. Commun. 2016, 7, 12394.
doi: 10.1038/ncomms12394 |
|
(d) Jin, K.; Po, K. H. L.; Wang, S.; Reuven, J. A.; Wai, C. N.; Lau, H. T.; Chan, T. H.; Chen, S.; Li, X. Bioorg. Med. Chem. 2017, 25, 4990.
doi: 10.1016/j.bmc.2017.04.039 |
|
(e) Kumarswamyreddy, K.; Reddy, D. N.; Robkis, D.M.; Kamiya, N.; Tsukamoto, R.; Kanaoka, M. M.; Higashiyama, T.; Oishi, S.; Bode, J. W. RSC Chem. Biol. 2022, 3, 721.
doi: 10.1039/D2CB00039C |
|
[56] |
(a) Declerck, V.; Nun, P.; Martinez, J.; Lamaty, F. Angew. Chem.. Int. Ed. 2009, 48, 9318.
doi: 10.1002/anie.v48:49 |
(b) Bonnamour, J.; Metro, T. X.; Martinez, J.; Lamaty, F. Green Chem. 2013, 15, 1116.
doi: 10.1039/c3gc40302e |
|
(c) Maurin, O.; Verdie, P.; Subra, G.; Lamaty, F.; Martinez, J.; Metro, T. X. Beilstein J. Org. Chem. 2017, 13, 2087.
|
|
[57] |
Yeboue, Y.; Gallard, B.; Le Moigne, N.; Jean, M.; Lamaty, F.; Martinez, J.; Metro, T. X. ACS Sustainable Chem. Eng. 2018, 6, 16001.
doi: 10.1021/acssuschemeng.8b04509 |
[58] |
Landeros, J. M.; Juaristi, E. Eur. J. Org. Chem.. 2017, 687.
|
[59] |
Hartrampf, N.; Saebi, A.; Poskus, M.; Gates, Z.; Callahan, P. A. J.; Cowfer, A. E.; Hanna, S.; Antilla, S.; Schissel, C. K.; Quartararo, A. J.; Ye, X.; Mijalis;, A. J.; Simon, M. D.; Loas, A.; Liu, S.; Jessen, C.; Nielsen, T. E.; Pentelute, B. L. Scienc. 2020, 368, 980.
doi: 10.1126/science.abb2491 |
[60] |
(a) Fuse, S.; Otake, Y.; Nakamura, H. Chem. Asian J. 2018, 13, 3818.
doi: 10.1002/asia.v13.24 pmid: 29998576 |
(b) Fuse, S.; Mifune, Y.; Takahashi, T. Angew. Chem. Int. Ed. 2014, 53, 851.
doi: 10.1002/anie.v53.3 pmid: 29998576 |
|
(c) Fuse, S.; Mifune, Y.; Nakamura, H.; Tanaka, H. Nat. Commun. 2016, 7, 13491.
doi: 10.1038/ncomms13491 pmid: 29998576 |
|
(d) Fuse, S.; Masuda, K.; Otake, Y.; Nakamura, H. Chem. Eur. J. 2019, 25, 15091.
doi: 10.1002/chem.v25.66 pmid: 29998576 |
|
(e) Otake, Y.; Nakamura, H.; Fuse, S. Angew. Chem. Int. Ed. 2018, 57, 11389.
doi: 10.1002/anie.201803549 pmid: 29998576 |
|
[61] |
Jolley, K. E.; Nye, W.; Nino, C. G.; Kapur, N.; Rabion, A.; Rossen, K.; Blacker, A. J. Org. Process Res. Dev. 2017, 21, 1557.
doi: 10.1021/acs.oprd.7b00214 |
[62] |
Mishra, A. K.; Parvari, G.; Santra S. K.; Bazylevich, A.; Dorfman, O.; Rahamim J.; Eichen, Y.; Szpilman, A. M. Angew. Chem. Int. Ed. 2021, 60, 2.
doi: 10.1002/anie.v60.1 |
[1] | Yang Li, Yanan Dong, Yuehui Li. Efficient Synthesis of Nitrile Compounds through Amide Conversion via N-Boroamide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 638-643. |
[2] | Sida Li, Xin Cui, Xing-Zhong Shu, Lipeng Wu. Titanium-Catalyzed Synthesis of 1,1-Diborylalkanes from Aryl Alkenes [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 631-637. |
[3] | Fakai Zou, Nengzhong Wang, Hui Yao, Hui Wang, Mingguo Liu, Nianyu Huang. Regio- and Stereo-selective Synthesis of 1β-/3R-Aryl Thiosugar [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 593-604. |
[4] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[5] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[6] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[7] | Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377. |
[8] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[9] | Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17. |
[10] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[11] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[12] | Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172. |
[13] | Si Wen, Yuhao Ding, Qingyu Tian, Jin Ge, Guolin Cheng. Rhodium(III)-Catalyzed Synthesis of CF3-1H-benzo[de][1,8]naph-thyridines via C—H Activation/Annulation of Benzimidates and CF3-Imidoyl Sulfoxonium Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 291-300. |
[14] | Mengzhu Li, Boying Meng, Wenjie Lan, Bin Fu. Synthesis of 2,3-Disubstituted Dihydrobenzofurans from o-Quinone Methides and Sulfur Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 195-203. |
[15] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||