[1] (a) Ward, R. S. Nat. Prod. Rep. 1995, 12, 183. (b) Thomson, R. H. Naturally Occurring Quinones IV. Recent Advances, 4th ed. Chapman & Hall, London, 1997. (c) Liu, X. L.; Zhao, Y.; Wang, W. W.; Wang, M. A.; Zhou, L. G. Chin. J. Org. Chem. 2017, 37, 2883(in Chinese). (刘鑫磊, 赵宇, 王卫伟, 王明安, 周立刚, 有机化学, 2017, 37, 2883.) [2] (a) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452. (b) Reddy, R. A.; Baumeister, U.; Keith, C.; Tschierske, C. J. Mater. Chem. 2007, 17, 62. (c) Svoboda, J.; Novotna, V.; Kozmik, V.; Glogarova, M.; Weissflog, W.; Diele, S.; Pelzl, G. J. Mater. Chem. 2003, 13, 2104. (d) Christian, J.; Susann, G.; Helmut, H.; Brigitte, S. Naphthalene Compounds for Liquid-Crystalline Mixtures, WO 2017097400 A1. [3] For selected reviews:(a) Zhou, L.; Zhao, J.; Shan, T.; Cai, X.; Peng, Y. Mini-Rev. Med. Chem. 2010, 10, 977. (b) Ammar, Y. A.; Salem, M. A.; Fayed, Eman A.; Helal, M. H.; El-Gaby, M. S. A.; Thabet, H. K. Syn. Commun. 2017, 47, 1341. For selected examples: (c) Zhao, H.; Neamati, N.; Mazumder, A.; Sunder, S.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 1186. (d) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293. (e) Wang, Y. H.; Zhao, J. Y. WO 2017202207, 2017. [4] For reviews:(a) Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenens, Toyota, S.; Iwanaga, T. in Science of Synthesis (Houben-Weyl Methods of Molecular Transformations), Eds.:Siegel, J. S.; Tobe, Y., Vol. 45b, Thieme, Stuttgart, 2010, pp. 745~854. (b) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron 2003, 59, 7. (c) Hein, S. J.; Lehnherr, D.; Arslan, H.; Uribe-Romo, F. J.; Dichtel, W. R. Acc. Chem. Res. 2017, 50, 2776. [5] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633. (c) Miyaura, N. Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Halides in Metal-Catalyzed Cross-Coupling Reactions (Eds. A. de Meijere, F. Diederich), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004. (d) Li, Y.; Wang, Z. H. Org. Lett. 2009, 11, 1385. (e) Heffernan, G. D.; Jacobus, D. P.; Schiehser, G. A.; Shieh, H.-M.; Zhao, W. Preparation of Aryl Derivatives as Antimalarial Agents, WO 2014074778A1. (f) Kikuchi, Y.; Takahagi, H.; One, K.; Iwasawa, N. Chem. Asian J. 2014, 9, 1001. (g) Wang, Y. B.; Lin, Z. C.; Fan, H. L.; Peng, X. H. Chem. Eur. J. 2016, 22, 10382. [6] Hall, D. Boronic Acids:Preparation and Applications, Wiley-VCH, Weinheim, 2011. [7] For reviews, see:(a) Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2003, 680, 3. (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. C.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. [8] For recent selected examples: (c) Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. Org. Lett. 2011, 13, 5766. (d) Tang, W. J.; Keshipeddy, S.; Zhang, Y. D.; Wei, X. D.; Savoie, J. Patel, N. D.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2011, 13, 1366. (e) Ros, A.; Estepa, B.; López-Rodríguez, R.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. Angew. Chem., Int. Ed. 2011, 50, 11724. (f) Kawamorita, S.; Ohmiya, H.; Iwai, T.; Sawamura, M. Angew. Chem., Int. Ed. 2011, 50, 8363. (g) Kawamorita, S.; Miyazaki, T.; Ohmiya, H.; Iwai, T.; Sawamura, M. J. Am. Chem. Soc. 2011, 133, 19310. (h) Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 134. (i) Jiang, M.; Yang, H. J.; Fu, H. Org. Lett. 2016, 18, 5248. (j) Xu, Y. L.; Fang, H. Chin. J. Org. Chem. 2018, 38, 738(in Chinese). (徐玉良, 方浩, 有机化学, 2018, 38, 738.) [9] (a) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. J. Am. Chem. Soc. 2012, 134, 19997. (b) Yamamoto, E.; Ukigai, S.; Ito, H. Chem. Sci. 2015, 6, 2943. (c) Mo, F. Y.; Jiang, Y. B.; Qiu, D.; Zhang, Y.; Wang, J. B. Angew. Chem., Int. Ed. 2010, 49, 1846. [10] For reviews:(a) Wrackmeyer, B. Heteroat. Chem. 2006, 17, 188. (b) Melen, R. L. Chem. Commun. 2014, 50, 1161. (c) Buñuel, E.; Cárdenas, D. J. Eur. J. Org. Chem. 2016, 5446. (d) Issaian, A.; Tu, K. N.; Blum, S. A. Acc. Chem. Res. 2017, 50, 2598. For selected recent examples: (e) Yang, C.-H.; Zhang, Y.-S.; Fan, W.-W.; Liu, G.-Q.; Li, Y.-M. Angew. Chem., Int. Ed. 2015, 54, 12636. (f) Faizi, D. J.; Issaian, A.; Davis, A. J.; Blum, S. A. J. Am. Chem. Soc. 2016, 138, 2126. (g) Jiang, J. L.; Zhang, Z. Q.; Fu, Y. Asian J. Org. Chem. 2017, 6, 282. (h) Yuan, K.; Wang, S.-N. Org. Lett. 2017, 19, 1462. (i) Warner, A. J.; Churn, A.; McGough, J. S.; Ingleson, M. J. Angew. Chem., Int. Ed. 2017, 56, 354. (j) Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635. (k) Jiang, T.; Bartholomeyzik, T.; Mazuela, J.; Willersinn, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 6024. (l) Yu, S. J.; Wu, C. Z.; Ge, S. Z. J. Am. Chem. Soc. 2017, 139, 6526. (m) Zuo, Y.-J.; Chang, X.-T.; Hao, Z.-M.; Zhong, C.-M. Org. Biomol. Chem. 2017, 15, 6323. (n) Wang, H.-M.; Zhou, H.; Xu, Q.-S.; Liu, T.-S.; Zhuang, C.-L.; Shen, M.-H.; Xu, H.-D. Org. Lett. 2018, 20, 1777. (o) Lv, J. H; Zhao, B. L.; liu, L.; Han, Y.; Yuan, Y.; Shi, Z. Z. Adv. Synth. Catal. 2018, 360, 4054. [11] Liedtke, R.; Harhausen, M.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2012, 14, 1448. [12] Warner, A. J.; Lawson, J. R.; Fasano, V.; Ingleson, M. J. Angew. Chem., Int. Ed. 2015, 54, 11245. [13] For selected examples from our group's work, please see:(a) Xiao, Y. J.; Zhang, J. L. Angew. Chem., Int. Ed. 2008, 47, 1903. (b) Liu, F.; Yu, Y. H.; Zhang, J. L. Angew. Chem., Int. Ed. 2009, 48, 5505. (c) Liu, F.; Qian, D. Y.; Li, L.; Zhao, X. L.; Zhang, J. L. Angew. Chem., Int. Ed. 2010, 49, 6669. (d) Zhou, L. J.; Zhang, M. R.; Li, W. B.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 6542. (e) Zhang, Z.-M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. Angew. Chem., Int. Ed. 2014, 53, 4350. (f) Wang, Y. D.; Zhang, P. C.; Qian, D. Y.; Zhang, J. L. Angew. Chem., Int. Ed. 2015, 54, 14849. [14] For selected recent examples from other group's work, please see:(a) Pathipati, S. R.; van der Werf, A.; Eriksson, L.; Selander, N. Angew. Chem., Int. Ed. 2016, 55, 11863. (b) Kumari, A. L. S.; Swamy, K. C. K. J. Org. Chem. 2016, 81, 1425. (c) Zhang, H.; Yao, Q.; Lin, L. L.; Xu, C. R.; Liu, X. H.; Feng, X. M. Adv. Synth. Catal. 2017, 359, 3454. (d) Pathipati, S. R.; Eriksson, L.; Selander, N. Chem. Commun. 2017, 53, 11353. (e) Liu, S. N.; Yang, P.; Peng, S. Y.; Zhu, C. H.; Cao, S. Y.; Li, J.; Sun, J.-T. Chem. Commun. 2017, 53, 1152. (f) Zheng, Y.; Chi, Y. J.; Bao, M.; Qiu, L. H.; Xu, X. F. J. Org. Chem. 2017, 82, 2129. (g) Du, Q. W.; Neudçrfl, J.-M.; Schmalz, H.-G. Chem. Eur. J. 2018, 24, 2379. (h) Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem., Int. Ed. 2020, 59, 1. [15] X-ray data and ORTEP depiction for compounds 3b (CCDC 1870210). [16] Zhou, H.; Moberg, C. J. Am. Chem. Soc. 2012, 134, 15992. [17] Lv, J. H.; Zhao, B. L.; Yuan, Y.; Han, Y.; Shi, Z. Z. Nat. Commun. 2020, 11, 1316. [18] (a) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164. (b) Yao, T. L.; Zhang, X. X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679. (c) Liu, Y. H.; Zhou, S. L. Org. Lett. 2005, 7, 4609. [19] Thompson, A. L. S.; Kabalka, G. W.; Akula, M. R.; Huffman, J. W. Synthesis 2005, 36, 547. [20] Nakanishi, W.; Matsuyama, N.; Hara, D.; Saeki, A.; Hitosugi, S.; Seki, S.; Isobe, H. Chem. Asian J. 2014, 9, 1782. [21] Li, Y.; Gao, L. X.; Han, F. S. Chem. Eru. J. 2010, 16, 7969. [22] Yao, W. B. CN 107188773, 2017. |