有机化学 ›› 2021, Vol. 41 ›› Issue (12): 4738-4748.DOI: 10.6023/cjoc202110010 上一篇 下一篇
所属专题: 有机光催化虚拟合辑; 绿色合成化学专辑; 热点论文虚拟合集
研究论文
袁金伟a,*(), 刘燕a, 葛元元a, 董少轩a, 宋赛依a, 杨亮茹a,*(), 肖咏梅a, 张守仁b,*(), 屈凌波c,*()
收稿日期:
2021-10-09
修回日期:
2021-11-09
发布日期:
2021-11-17
通讯作者:
袁金伟, 杨亮茹, 张守仁, 屈凌波
基金资助:
Jinwei Yuana(), Yan Liua, Yuanyuan Gea, Shaoxuan Donga, Saiyi Songa, Liangru Yanga(), Yongmei Xiaoa, Shouren Zhangb(), Lingbo Quc()
Received:
2021-10-09
Revised:
2021-11-09
Published:
2021-11-17
Contact:
Jinwei Yuan, Liangru Yang, Shouren Zhang, Lingbo Qu
Supported by:
文章分享
以荧光素为有机光催化剂, K2S2O8为氧化剂, 在室温氮气保护下研究了β-萘酚与二芳基氧化膦的区域选择性邻位C—H膦酰化反应. 该反应条件温和, 官能团适用范围广, 产率高, 区域选择性好, 是β-萘酚改性的理想而实用的选择. 实验结果揭示反应通过自由基途径进行.
袁金伟, 刘燕, 葛元元, 董少轩, 宋赛依, 杨亮茹, 肖咏梅, 张守仁, 屈凌波. 光催化下β-萘酚与二芳基膦氧化物区域选择性邻位膦酰化研究[J]. 有机化学, 2021, 41(12): 4738-4748.
Jinwei Yuan, Yan Liu, Yuanyuan Ge, Shaoxuan Dong, Saiyi Song, Liangru Yang, Yongmei Xiao, Shouren Zhang, Lingbo Qu. Visible-Light-Induced Regioselective ortho-C—H Phosphonylation of β-Naphthols with Diarylphosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4738-4748.
Entry | Catalyst (mol%) | Oxidant (equiv.) | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | — | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 11 |
2 | Rhodamine B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 0 |
3 | Eosin Y (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
4 | Eosin B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
5 | Fluorescein (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 65 |
6 | Ruthenium (0.1)c | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
7 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 80 |
8 | Fluorescein (0.15) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 45 |
9 | Fluorescein (0.2) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 40 |
10 | Fluorescein (0.05) | (NH4)2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 70 |
11 | Fluorescein (0.05) | TBPB (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 15 |
12 | Fluorescein (0.05) | DTBP (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 21 |
13 | Fluorescein (0.05) | BPO (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 26 |
14 | Fluorescein (0.05) | K2S2O8 (1.0) | DMF-H2O (V∶V=1∶1) | 16 | 48 |
15 | Fluorescein (0.05) | K2S2O8 (1.5) | DMF-H2O (V∶V=1∶1) | 16 | 67 |
16 | Fluorescein (0.05) | K2S2O8 (2.5) | DMF-H2O (V∶V=1∶1) | 16 | 78 |
17 | Fluorescein (0.05) | K2S2O8 (2.0) | DMSO | 16 | 12 |
18 | Fluorescein (0.05) | K2S2O8 (2.0) | MeCN | 16 | 25 |
19 | Fluorescein (0.05) | K2S2O8 (2.0) | DCE | 16 | 20 |
20 | Fluorescein (0.05) | K2S2O8 (2.0) | Dioxane | 16 | 34 |
21c | Fluorescein (0.05) | K2S2O8 (2.0) | DMF | 16 | 67 |
22d | Fluorescein (0.05) | K2S2O8 (2.0) | H2O | 16 | 0 |
23 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 2 | 50 |
24 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 4 | 71 |
25 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 83 |
26 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 8 | 78 |
27d | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 85 |
28e | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 0 |
29f | Fluorescein (0.05) | — | DMF-H2O (V∶V=1∶1) | 6 | 0 |
Entry | Catalyst (mol%) | Oxidant (equiv.) | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | — | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 11 |
2 | Rhodamine B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 0 |
3 | Eosin Y (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
4 | Eosin B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
5 | Fluorescein (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 65 |
6 | Ruthenium (0.1)c | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
7 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 80 |
8 | Fluorescein (0.15) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 45 |
9 | Fluorescein (0.2) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 40 |
10 | Fluorescein (0.05) | (NH4)2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 70 |
11 | Fluorescein (0.05) | TBPB (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 15 |
12 | Fluorescein (0.05) | DTBP (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 21 |
13 | Fluorescein (0.05) | BPO (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 26 |
14 | Fluorescein (0.05) | K2S2O8 (1.0) | DMF-H2O (V∶V=1∶1) | 16 | 48 |
15 | Fluorescein (0.05) | K2S2O8 (1.5) | DMF-H2O (V∶V=1∶1) | 16 | 67 |
16 | Fluorescein (0.05) | K2S2O8 (2.5) | DMF-H2O (V∶V=1∶1) | 16 | 78 |
17 | Fluorescein (0.05) | K2S2O8 (2.0) | DMSO | 16 | 12 |
18 | Fluorescein (0.05) | K2S2O8 (2.0) | MeCN | 16 | 25 |
19 | Fluorescein (0.05) | K2S2O8 (2.0) | DCE | 16 | 20 |
20 | Fluorescein (0.05) | K2S2O8 (2.0) | Dioxane | 16 | 34 |
21c | Fluorescein (0.05) | K2S2O8 (2.0) | DMF | 16 | 67 |
22d | Fluorescein (0.05) | K2S2O8 (2.0) | H2O | 16 | 0 |
23 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 2 | 50 |
24 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 4 | 71 |
25 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 83 |
26 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 8 | 78 |
27d | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 85 |
28e | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 0 |
29f | Fluorescein (0.05) | — | DMF-H2O (V∶V=1∶1) | 6 | 0 |
[1] |
(a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
doi: 10.1021/cr020033s pmid: 18269226 |
(b) Vasilev, N.; Elfahmi, R. B.; Kayser, O.; Momekov, G.; Konstantinov, S.; Ionkova, I. J. Nat. Prod. 2006, 69, 1014.
doi: 10.1021/np060022k pmid: 18269226 |
|
(c) Neugebauer, R. C.; Uchiechowska, U.; Meier, R.; Hruby, H.; Valkov, V.; Verdin, E.; Sippl, W.; Jung, M. J. Med. Chem. 2008, 51, 1203.
doi: 10.1021/jm700972e pmid: 18269226 |
|
(d) Roche, S. P.; Porco Jr, J. A. Angew. Chem.,Int. Ed. 2011, 50, 4068.
doi: 10.1002/anie.v50.18 pmid: 18269226 |
|
(e) Ogata, T.; Yoshida, T.; Shimizu, M.; Tanaka, M.; Fukuhara, C.; Ishii, J.; Nishiuchi, A.; Inamoto, K.; Kimachi, T. Tetrahedron 2016, 72, 1423.
doi: 10.1016/j.tet.2016.01.040 pmid: 18269226 |
|
[2] |
(a) Shen, A. Y.; Tsai, C. T.; Chen, C. L. Eur. J. Med. Chem. 1999, 34, 877.
doi: 10.1016/S0223-5234(99)00204-4 |
(b) Huang, M. H.; Wa, S. N.; Wang, J. P.; Lin, C. H.; Lu, S. I.; Lian, L. F.; Shen, A. Y. Drug Dev. Res. 2003, 60, 261.
doi: 10.1002/(ISSN)1098-2299 |
|
(c) Chopade, H. N.; Meshram, J. S.; Pagadala, R.; Mungole, A. J. Int. J. Chem. Tech. Res. 2010, 2, 1823.
|
|
(d) Das, B.; Reddy, C. R.; Kashanna, J.; Mamidy, S. K.; G. Kumar, C. Med. Chem. Res. 2012, 21, 3321.
doi: 10.1007/s00044-011-9884-x |
|
[3] |
(a) Li, S.; Yang, X.; Wang, Y.; Zhou, H.; Zhang, B.; Huang, G.; Zhang, Y.; Li, Y. Adv. Synth. Catal. 2018, 360, 4452.
doi: 10.1002/adsc.v360.22 |
(b) Chang, C. H.; Sathishkumar, N.; Liao, Y. T.; Chen, H. T.; Han, J. L. Adv. Synth. Catal. 2020, 362, 903.
doi: 10.1002/adsc.v362.4 |
|
(c) Zhang, C.; Cheng, Y.; Li, F.; Luan, Y.; Li, P.; Li, W. Adv. Synth. Catal. 2020, 362, 1286.
doi: 10.1002/adsc.v362.6 |
|
(d) Wang, C. J.; Yang, Q. Q.; Wang, M. X.; Shang, Y. H.; Tong, X. Y.; Deng, Y. H.; Shao, Z. Org. Chem. Front. 2020, 7, 609.
doi: 10.1039/C9QO01391A |
|
(e) Wu, S.; Dong, J.; Zhou, D.; Wang, W.; Liu, L.; Zhou, Y. J. Org. Chem. 2020, 85, 14307.
doi: 10.1021/acs.joc.9b03028 |
|
[4] |
(a) Lee, H.; Yi, C. S. Eur. J. Org. Chem. 2015, 2015, 1899.
doi: 10.1002/ejoc.v2015.9 |
(b) Paul, V.; Sudalai, A.; Daniel, T.; Srinivasan, K. V. Tetrahedron Lett. 1994, 35, 2601.
|
|
[5] |
(a) Paniak, T. J.; Kozlowski, M. C. Org. Lett. 2020, 22, 1765.
doi: 10.1021/acs.orglett.0c00046 pmid: 32108765 |
(b) Jurrat, M.; Maggi, L.; Lewis, W; Ball, L. T. Nat. Chem. 2020, 12, 260.
doi: 10.1038/s41557-020-0425-4 pmid: 32108765 |
|
[6] |
(a) Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. J. Green Chem. 2016, 18, 1538.
doi: 10.1039/C5GC02292D |
(b) Zhou, K.; Chen, M.; Yao, L.; Wu, J. Org. Chem. Front. 2018, 5, 371.
doi: 10.1039/C7QO00811B |
|
[7] |
(a) Jia, L.; Tang, Q.; Luo, M.; Zeng, X. J. Org. Chem. 2018, 83, 508.
|
(b) Barton, D. H. R.; Greneur, S. L.; Motherwell, W. B. Tetrahedron Lett. 1983, 24, 160.
|
|
(c) Tang, Q.; Zhang, C.; Luo, M. J. Am. Chem. Soc. 2008, 130, 5840.
doi: 10.1021/ja711153b |
|
[8] |
(a) Silva, L. T.; Azeredo, J. B.; Saba, S.; Rafique, J.; Bortoluzzi, A. J.; Braga, A. L. Eur. J. Org. Chem. 2017, 2017, 4740.
doi: 10.1002/ejoc.v2017.32 pmid: 29313345 |
(b) Lima, D. B.; Santos, P. H. V.; Fiori, P.; Badshah, G.; Luz, E. Q.; Seckler, D.; Rampon, D. S. ChemistrySelect 2019, 4, 13558.
doi: 10.1002/slct.v4.46 pmid: 29313345 |
|
(c) Ghosh, T.; Mukherjee, N.; Ranu, B. C. ACS Omega 2018, 3, 17540.
doi: 10.1021/acsomega.8b02740 pmid: 29313345 |
|
(d) Meirinho, A. G.; Pereira, V. F.; Martins, G. M.; Saba, S.; Rafique, J.; Braga, A. L.; Mendes, S. R. Eur. J. Org. Chem. 2019, 2019, 6465.
doi: 10.1002/ejoc.201900992 pmid: 29313345 |
|
(e) Huang, X.; Chen, Y.; Zhen, S.; Song, L.; Gao, M.; Zhang, P.; Li, H.; Yuan, B.; Yang, G. J. Org. Chem. 2018, 83, 7331.
doi: 10.1021/acs.joc.7b02718 pmid: 29313345 |
|
(f) Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.
doi: 10.1039/C5GC00403A pmid: 29313345 |
|
(g) Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. J. Green Chem. 2016, 18, 1538.
doi: 10.1039/C5GC02292D pmid: 29313345 |
|
(h) Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. RSC Adv. 2015, 5, 10803.
pmid: 29313345 |
|
(i) Xu, Z. B.; Lu, G. P.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.
doi: 10.1039/C6OB02823C pmid: 29313345 |
|
(j) Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem. 2014, 79, 10605.
doi: 10.1021/jo501778h pmid: 29313345 |
|
(k) Khaef, S.; Rostami, A.; Khakyzadeh, V.; Zolfigol, M. A.; Taherpour, A. A.; Yarie, M. Mol. Catal. 2020, 484, 110772.
pmid: 29313345 |
|
[9] |
(a) Georage, A.; Veis, A. Chem. Rev. 2008, 108, 4670.
doi: 10.1021/cr0782729 pmid: 21250669 |
(b) Zhao, D.; Wang, R. Chem. Soc. Rev. 2012, 41, 2095.
doi: 10.1039/C1CS15247E pmid: 21250669 |
|
(c) Fernández-Pérez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran, A. Chem. Rev. 2011, 111, 2119.
doi: 10.1021/cr100244e pmid: 21250669 |
|
[10] |
(a) Falk, A.; Göderz, A. L.; Schmalz, H. G. Angew. Chem., Int. Ed. 2013, 52, 1576.
doi: 10.1002/anie.201208082 pmid: 23231748 |
(b) Robert, T.; Velder, J.; Schmalz, H. G. Angew. Chem., Int. Ed. 2008, 47, 7718.
doi: 10.1002/anie.v47:40 pmid: 23231748 |
|
(c) Rubio, M.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Commun. 2005, 628.
pmid: 23231748 |
|
(d) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. ACS Catal. 2014, 4, 4398.
doi: 10.1021/cs501402z pmid: 23231748 |
|
(e) Takahiro, N.; Yuko, M.; Tamio, H. Org. Lett. 2011, 13, 3674.
doi: 10.1021/ol2013236 pmid: 23231748 |
|
(f) Bakewell, C.; Cao, T. P. A.; Long, N.; Le Goff, X. F.; Auffrant, A.; Williams, C. K. J. Am. Chem. Soc. 2012, 134, 20577.
doi: 10.1021/ja310003v pmid: 23231748 |
|
(g) Liu, J. Y.; Liu, S. R.; Li, B. X.; Li, Y. G.; Li, Y. S. Organometallics 2011, 30, 4052.
doi: 10.1021/om200317x pmid: 23231748 |
|
(h) Han, C.; Zhu, L.; Zhao, F.; Zhang, Z.; Wang, J.; Deng, Z.; Xu, H.; Li, J.; Ma, D.; Yan, P. Chem. Commun. 2014, 50, 2670.
doi: 10.1039/C3CC49020C pmid: 23231748 |
|
(i) Han, C.; Zhao, F.; Zhang, Z.; Zhu, L.; Xu, H.; Li, J.; Ma, D.; Yan, P. Chem. Mater. 2013, 25, 4966.
doi: 10.1021/cm403160p pmid: 23231748 |
|
(j) Shen, R.; Zhang, M.; Xiao, J.; Dong, C.; Han, L. B. Green Chem. 2018, 20, 5111.
doi: 10.1039/C8GC02918K pmid: 23231748 |
|
[11] |
(a) Xie, J.; Li, H.; Xue, Q.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2012, 354, 1646.
doi: 10.1002/adsc.201200360 |
(b) Vassilion, S.; Weglarz-Tomczak, E.; Berlicki, Ł.; Pawelczak, M.; Nocek, B.; Mulligan, R.; Joachimiak, A.; Mucha, A. J. Med. Chem. 2014, 57, 8140.
doi: 10.1021/jm501071f |
|
(c) Mucha, A.; Kafarski, P.; Berlicki, Ł. J. Med. Chem. 2011, 54, 595.
|
|
[12] |
(a) Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 1269.
doi: 10.3762/bjoc.9.143 pmid: 23843922 |
(b) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
doi: 10.1021/cr2002646 pmid: 23843922 |
|
[13] |
(a) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1980, 21, 359.
doi: 10.1016/S0040-4039(01)85472-1 |
(b) Montchamp, J. L.; Dumond, Y. R. J. Am. Chem. Soc. 2001, 123, 510.
doi: 10.1021/ja005721c |
|
[14] |
(a) Shaikh, R. S.; Ghosh, I.; König, B. Chem.-Eur. J. 2017, 23, 12120.
doi: 10.1002/chem.201701283 |
(b) Xu, K.; Yang, F.; Zhang, G.; Wu, Y. Green Chem. 2013, 15, 1055.
doi: 10.1039/c3gc00030c |
|
(c) Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Org. Lett. 2011, 13, 3478.
doi: 10.1021/ol201141m |
|
(d) Feng, C. G.; Ye, M.; Xiao, K. J.; Li, S.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 932.
|
|
[15] |
Yang, J.; Chen, T.; Han, L. B. J. Am. Chem. Soc. 2015, 137, 1782.
doi: 10.1021/ja512498u pmid: 25629169 |
[16] |
Zhao, Y. L.; Wu, G. J.; Han, F. S. Chem. Commun. 2012, 48, 5868.
doi: 10.1039/c2cc31718d |
[17] |
Dhawan, B.; Redmore, D. J. Org. Chem. 1991, 56, 833.
doi: 10.1021/jo00002a060 |
[18] |
Xiong, B.; Li, M.; Liu, Y.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S. F.; Han, L. B. Adv. Synth. Catal. 2014, 356, 781.
doi: 10.1002/adsc.v356.4 |
[19] |
(a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Commun. 2010, 2, 527.
doi: 10.1038/ncomms1531 pmid: 34253729 |
(b) Sun, C. L.; Shi, Z. J. Chem. Rev. 2014, 114, 921.
pmid: 34253729 |
|
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
doi: 10.1126/science.1239176 pmid: 34253729 |
|
(d) Jin, J.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565.
doi: 10.1002/anie.201410432 pmid: 34253729 |
|
(e) Zoller, J.; Fabry, D. C.; Rueping, M. ACS Catal. 2015, 5, 390.
pmid: 34253729 |
|
(f) Li, X.; Gu, X.; Li, P. ACS Catal. 2014, 4, 1897.
doi: 10.1021/cs5005129 pmid: 34253729 |
|
(g) Xiao, T.; Li, L.; Lin, G.; Mao, Z.; Zhou, L. Org. Lett. 2014, 16, 4232.
doi: 10.1021/ol501933h pmid: 34253729 |
|
(h) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
doi: 10.1039/C5CC00878F pmid: 34253729 |
|
(i) Zhong, J. J.; Meng, Q. Y.; Liu, B.; Li, X. B.; Gao, X. W.; Lei, T.; Wu, C. J.; Li, Z. J.; Tung, C. H.; Wu, L. Z. Org. Lett. 2014, 16, 1988.
doi: 10.1021/ol500534w pmid: 34253729 |
|
(j) Ishii, T.; Kakeno, Y.; Nagao, K.; Ohmiya, H. J. Am. Chem. Soc. 2019, 141, 3854.
doi: 10.1021/jacs.9b00880 pmid: 34253729 |
|
(k) Hell, S. M.; Meyer, C. F.; Misale, A.; Sap, J. B. I.; Christensen, K. E.; Willis, M. C.; Trabanco, A. A.; Gouverneur, V. Angew. Chem.,Int. Ed. 2020, 132, 11717.
doi: 10.1002/ange.v132.28 pmid: 34253729 |
|
(l) Chen, F.; Shao, Y.; Li, M.; Yang, C.; Su, S. J.; Jiang, H.; Ke, Z.; Zeng, W. Nat. Commun. 2021, 12, 4261.
doi: 10.1038/s41467-021-24559-x pmid: 34253729 |
|
[20] |
(a) Li, C. X.; Tu, D. S.; Yao, R.; Yan, H.; Lu, C. S. Org. Lett. 2016, 18, 4928.
doi: 10.1021/acs.orglett.6b02413 |
(b) Wang, C. H.; Li, Y. H.; Yang, S. D. Org. Lett. 2018, 20, 2382.
doi: 10.1021/acs.orglett.8b00722 |
|
(c) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang, G.; Lei, A. Chem. Commun. 2016, 52, 12338.
doi: 10.1039/C6CC06881B |
|
[21] |
Luo, K.; Chen, Y. Z.; Yang, W. C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.
doi: 10.1021/acs.orglett.5b03497 |
[22] |
Singsardar, M.; Dey, A.; Sarkar, R.; Hajra, A. J. Org. Chem. 2018, 83, 12694.
doi: 10.1021/acs.joc.8b02019 pmid: 30246531 |
[23] |
(a) Mai, W. P.; Yuan, J. W.; Zhu, J. L.; Li, Q. Q.; Yang, L. R.; Xiao, Y. M.; Mao, P.; Qu, L. B. ChemistrySelect 2019, 4, 11066.
doi: 10.1002/slct.v4.37 |
(b) Yuan, J. W.; Li, Y. Z.; Mai, W. P.; Yang, L. R.; Qu, L. B. Tetrahedron 2016, 72, 3084.
doi: 10.1016/j.tet.2016.04.034 |
|
(c) Yuan, J. W.; Yang, L. R.; Mao, P.; Qu, L. B. RSC Adv. 2016, 6, 87058.
doi: 10.1039/C6RA19002B |
|
[24] |
(a) Shi, Y.; Chen, R.; Guo, K.; Meng, F.; Cao, S.; Gu, C.; Zhu, Y. Tetrahedron Lett. 2018, 59, 2062.
doi: 10.1016/j.tetlet.2018.04.040 |
(b) Luo, K.; Yang, W. C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.
doi: 10.1002/ajoc.v6.4 |
|
(c) Yoo, W. J.; Kobayashi, S. Green Chem. 2013, 15, 1844.
doi: 10.1039/c3gc40482j |
|
(d) Quint, V.; Morlet-Savary, F.; Lohier, J. F.; Lalevée, J.; Gaumont, A. C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436.
doi: 10.1021/jacs.6b04069 |
|
(e) Liu, D.; Chen, J. Q.; Wang, X. Z.; Xu, P. F. Adv. Synth. Catal. 2017, 359, 2773.
doi: 10.1002/adsc.v359.16 |
|
(f) Li, Z.; Song, H.; Guo, R.; Zuo, M.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W. Green Chem. 2019, 21, 3602.
doi: 10.1039/C9GC01359H |
|
[25] |
(a) Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, B. L.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
doi: 10.1021/jacs.0c11138 |
(b) Xie, P.; Fan, J.; Liu, Y.; Wo, X.; Fu, W.; Loh, T. P. Org. Lett. 2018, 20, 3341.
doi: 10.1021/acs.orglett.8b01173 |
|
(c) Vil', V. A.; Krylov, I. B.; Terent’ev, A. O. Sci. China Chem. 2021, 64, 681.
doi: 10.1007/s11426-021-9971-9 |
[1] | 刘继宇, 李圣玉, 陈款, 朱茵, 张元. 三苯胺功能化有序介孔聚合物作为无金属光催化剂用于二硫化物合成[J]. 有机化学, 2024, 44(2): 605-612. |
[2] | 梅青刚, 李清寒. 可见光促进C(3)(杂)芳硫基吲哚化合物的合成研究进展[J]. 有机化学, 2024, 44(2): 398-408. |
[3] | 朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳. 烷氧自由基引发1,5-氢原子转移实现C(sp3)—H键官能团化的研究进展[J]. 有机化学, 2024, 44(1): 1-17. |
[4] | 童红恩, 郭宏宇, 周荣. 可见光促进惰性碳-氢键对羰基的加成反应进展[J]. 有机化学, 2024, 44(1): 54-69. |
[5] | 董江湖, 宣良明, 王池, 赵晨熙, 王海峰, 严琼姣, 汪伟, 陈芬儿. 无过渡金属或无光催化剂条件下可见光促进喹喔啉酮C(3)—H官能团化研究进展[J]. 有机化学, 2024, 44(1): 111-136. |
[6] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[7] | 金玉坤, 任保轶, 梁福顺. 可见光介导的三氟甲基的选择性C-F键断裂及其在偕二氟类化合物合成中的应用[J]. 有机化学, 2024, 44(1): 85-110. |
[8] | 刘颖杰, 石岗庆, 仇格, 张鑫, 宋冬雪, 陈宁, 于淼, 许颖. 光/电催化醚α-位官能团化研究进展[J]. 有机化学, 2023, 43(8): 2664-2681. |
[9] | 王灵娜, 刘晓庆, 林钢, 金泓颖, 焦民均, 刘雪粉, 罗书平. 光促进双(4-二苯甲酮)苯醚催化C(sp3)—H键活化构建C—S键[J]. 有机化学, 2023, 43(8): 2848-2854. |
[10] | 赵瑜, 张凯, 白育斌, 张琰图, 史时辉. 无金属条件下可见光催化与溴盐协同促进烯烃的氢硅化反应研究[J]. 有机化学, 2023, 43(8): 2837-2847. |
[11] | 杨晓娜, 郭宏宇, 周荣. 可见光促进有机硅化合物参与的化学转化[J]. 有机化学, 2023, 43(8): 2720-2742. |
[12] | 普佳霞, 贾小英, 韩丽荣, 李清寒. 可见光诱导C—N键断裂构建C—C键的研究进展[J]. 有机化学, 2023, 43(8): 2591-2613. |
[13] | 刘亚鑫, 张渔, 罗书平. 热延迟荧光(TADF)光敏剂的设计合成及其光催化脱卤反应性能研究[J]. 有机化学, 2023, 43(7): 2476-2483. |
[14] | 陈宁, 张成栋, 李鹏, 仇格, 刘颖杰, 张天雷. 光/电化学驱动螺环化合物的合成研究进展[J]. 有机化学, 2023, 43(7): 2293-2303. |
[15] | 黄芬, 罗维纬, 周俊. 基于C—H键断裂的多氯烷基化反应研究进展[J]. 有机化学, 2023, 43(7): 2368-2390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||