有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3530-3548.DOI: 10.6023/cjoc202204036 上一篇 下一篇
综述与进展
收稿日期:
2022-04-14
修回日期:
2022-07-30
发布日期:
2022-08-17
通讯作者:
姜辉, 郝新奇
基金资助:
Lianrong Fu, Yan-Bing Wang, Hui Jiang(), Xin-Qi Hao(), Mao-Ping Song
Received:
2022-04-14
Revised:
2022-07-30
Published:
2022-08-17
Contact:
Hui Jiang, Xin-Qi Hao
Supported by:
文章分享
聚烯烃材料年产量巨大, 用途广泛, 与人类生产生活密切相关. 聚烯烃研究领域的核心在于催化剂, 催化剂的性能往往决定了聚烯烃的性质. 因此, 高性能的催化剂设计与合成成为研究的一大热点. 随着科技工作者的不懈努力, 大量的催化剂相继问世. 其中钴配合物是一类十分重要的烯烃聚合催化剂, 它能够用于催化多种单体聚合. 这些钴配合物结构丰富, 配位原子种类多样(例如N、O、P、S等), 且合成简便. 因此, 通过对催化剂结构进行精确调控, 可以实现提高其催化活性、调整聚合物的微观结构、改善聚合物的宏观性能等目的. 综述了钴配合物在乙烯、共轭二烯、降冰片烯、丙烯酸酯等常见单体均聚中的应用, 并从结构的角度将钴配合物进行了分类. 此外, 还详细讨论了催化剂结构、助催化剂、反应温度等因素对催化剂活性、聚合物分子量以及聚合物微观结构等性质的影响, 期望为钴配合物的设计与合成提供参考.
付联荣, 王艳冰, 姜辉, 郝新奇, 宋毛平. 钴配合物在烯烃聚合中的应用[J]. 有机化学, 2022, 42(11): 3530-3548.
Lianrong Fu, Yan-Bing Wang, Hui Jiang, Xin-Qi Hao, Mao-Ping Song. Applications of Cobalt Complexes in Olefin Polymerization[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3530-3548.
[1] |
Sturzel, M.; Mihan, S.; Mulhaupt, R. Chem. Rev. 2016, 116, 1398.
doi: 10.1021/acs.chemrev.5b00310 |
[2] |
Bahuleyan, B. K.; Ahn, I. Y.; Appukuttan, V.; Lee, S. H.; Ha, C.-S.; Kim, I.; Suh, H. Macromol. Res. 2010, 18, 701.
doi: 10.1007/s13233-010-0710-y |
[3] |
Horne, S. E.; Kiehl, J. P.; Shipman, J. J.; Folt, V. L.; Gibbs, C. F.; Willson, E. A.; Newton, E. B.; Reinhart, M. A. Ind. Eng. Chem. 1956, 48, 784.
doi: 10.1021/ie50556a033 |
[4] |
Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Coord. Chem. Rev. 2010, 254, 661.
doi: 10.1016/j.ccr.2009.09.023 |
[5] |
Wang, B.; Cui, D.; Lv, K. Macromolecules 2008, 41, 1983.
doi: 10.1021/ma702505n |
[6] |
Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708.
doi: 10.1021/ja01611a109 |
[7] |
Coates, G. W. Dalton Trans. 2002, 467.
|
[8] |
Redshaw, C.; Tang, Y. Chem. Soc. Rev. 2012, 41, 4484.
doi: 10.1039/c2cs35028a pmid: 22592513 |
[9] |
Tan, C.; Chen, C. Angew. Chem., Int. Ed. 2019, 58, 7192.
doi: 10.1002/anie.201814634 |
[10] |
Wang, F.; Chen, C. Polym. Chem. 2019, 10, 2354.
doi: 10.1039/C9PY00226J |
[11] |
Tan, C.; Chen, C. Sci. Bull. 2020, 65, 1137.
doi: 10.1016/j.scib.2020.04.009 |
[12] |
Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283.
doi: 10.1021/cr980461r |
[13] |
Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strömberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728.
doi: 10.1021/ja990449w |
[14] |
Wang, Z.; Solan, G. A.; Zhang, W. J.; Sun, W.-H. Coord. Chem. Rev. 2018, 363, 92.
doi: 10.1016/j.ccr.2018.02.016 |
[15] |
Schmidt, G. F.; Brookhart, M. J. Am. Chem. Soc. 1985, 107, 1443.
doi: 10.1021/ja00291a073 |
[16] |
Daugulis, O.; Brookhart, M.; White, P. S. Organometallics 2003, 22, 4699.
doi: 10.1021/om030414b |
[17] |
Hyatt, M. G.; Guironnet, D. Organometallics 2019, 38, 788.
doi: 10.1021/acs.organomet.8b00765 |
[18] |
Zhao, Y.; Jung, J.; Nozaki, K. J. Am. Chem. Soc. 2021, 143, 18832.
doi: 10.1021/jacs.1c08512 |
[19] |
Laine, T. V.; Klinga, M.; Maaninen, A.; Aitola, E.; Leskela, M. Acta Chem. Scand. 1999, 53, 968.
doi: 10.3891/acta.chem.scand.53-0968 |
[20] |
Rosa, V.; Carabineiro, S. A.; Avilés, T.; Gomes, P. T.; Welter, R.; Campos, J. M.; Ribeiro, M. R. J. Organomet. Chem. 2008, 693, 769.
doi: 10.1016/j.jorganchem.2007.12.007 |
[21] |
Bianchini, C.; Mantovani, G.; Meli, A.; Migliacci, F.; Laschi, F. Organometallics 2003, 22, 2545.
doi: 10.1021/om030227d |
[22] |
Sun, W.-H.; Tang, X. B.; Gao, T. L.; Wu, B.; Zhang, W. J.; Ma, H. W. Organometallics 2004, 23, 5037.
doi: 10.1021/om0496636 |
[23] |
Xiao, T. P. F.; Lai, J. J.; Zhang, S.; Hao, X.; Sun, W.-H. Catal. Sci. Technol. 2011, 1, 462.
doi: 10.1039/c1cy00028d |
[24] |
Song, S. J.; Zhao, W. Z.; Wang, L.; Redshaw, C.; Wang, F. S.; Sun, W.-H. J. Organomet. Chem. 2011, 696, 3029.
doi: 10.1016/j.jorganchem.2011.06.003 |
[25] |
Xiao, T. P. F.; Hao, P.; Kehr, G.; Hao, X.; Erker, G.; Sun, W.-H. Organometallics 2011, 30, 4847.
doi: 10.1021/om2003392 |
[26] |
Song, S. J.; Xiao, T. P. F.; Redshaw, C.; Hao, X.; Wang, F. S.; Sun, W.-H. J. Organomet. Chem. 2011, 696, 2594.
doi: 10.1016/j.jorganchem.2011.03.039 |
[27] |
Wang, M.; Yu, X. M.; Shi, Z.; Qian, M. X.; Jin, K.; Chen, J. H.; He, R. J. Organomet. Chem. 2002, 645, 127.
doi: 10.1016/S0022-328X(01)01341-9 |
[28] |
Wang, L.; Zhang, C.; Wang, Z.-X. Eur. J. Inorg. Chem. 2007, 2477.
|
[29] |
Sun, W.-H.; Hao, P.; Zhang, S.; Shi, Q.; Zuo, W.; Tang, X.; Lu, X. Organometallics 2007, 26, 2720.
doi: 10.1021/om0700819 |
[30] |
Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049.
doi: 10.1021/ja9802100 |
[31] |
Takeuchi, D. In Organometallic Reactions and Polymerization, Eds.: Osakada, K., Springer Berlin Heidelberg, Berlin, 2014, pp. 119-167.
|
[32] |
Flisak, Z.; Sun, W.-H. ACS Catal. 2015, 5, 4713.
doi: 10.1021/acscatal.5b00820 |
[33] |
Sun, W.-H.; Hao, P.; Li, G.; Zhang, S.; Wang, W. Q.; Yi, J. J.; Asma, M.; Tang, N. J. Organomet. Chem. 2007, 692, 4506.
doi: 10.1016/j.jorganchem.2007.04.027 |
[34] |
Gao, R.; Wang, K. F.; Li, Y.; Wang, F. S.; Sun, W.-H.; Redshaw, C.; Bochmann, M. J. Mol. Catal. A: Chem. 2009, 309, 166.
doi: 10.1016/j.molcata.2009.05.021 |
[35] |
Yu, J.; Huang, W.; Wang, L.; Redshaw, C.; Sun, W.-H. Dalton Trans. 2011, 40, 10209.
doi: 10.1039/c1dt11062d |
[36] |
He, F.; Zhao, W.; Cao, X.-P.; Liang, T.; Redshaw, C.; Sun, W.-H. J. Organomet. Chem. 2012, 713, 209.
doi: 10.1016/j.jorganchem.2012.05.020 |
[37] |
Mahmood, Q.; Ma, Y.; Hao, X.; Sun, W.-H. Appl. Organomet. Chem. 2019, 33, 4857.
|
[38] |
Yan, Y.; Yuan, S.-F.; Liu, M.; Solan, G. A.; Ma, Y.-P.; Liang, T.-L.; Sun, W.-H. Chin. J. Polym. Sci. 2022, 40, 266.
doi: 10.1007/s10118-022-2670-z |
[39] |
Wang, S. L.; Zhao, W. Z.; Hao, X.; Li, B. X.; Redshaw, C.; Li, Y. S.; Sun, W. -H. J. Organomet. Chem. 2013, 731, 78.
doi: 10.1016/j.jorganchem.2013.02.016 |
[40] |
Han, M.; Oleynik, I. I.; Liu, M.; Ma, Y.; Oleynik, I. V.; Solan, G. A.; Liang, T.; Sun, W. -H. Appl. Organomet. Chem. 2021, 36, 6529.
|
[41] |
Liu, J.-Y.; Zheng, Y.; Hu, N.-H.; Li, Y.-S. Chin. J. Chem. 2006, 24, 1447.
doi: 10.1002/cjoc.200690272 |
[42] |
Antonov, A. A.; Semikolenova, N. V.; Talsi, E. P.; Bryliakov, K. P. J. Organomet. Chem. 2019, 884, 55.
doi: 10.1016/j.jorganchem.2019.02.002 |
[43] |
Wang, L.; Sun, W.-H.; Han, L.; Yang, H.; Hu, Y.; Jin, X. J. Organomet. Chem. 2002, 658, 62.
doi: 10.1016/S0022-328X(02)01623-6 |
[44] |
Jie, S. Y..; Zhang, S.; Wedeking, K.; Zhang, W.; Ma, H. W.; Lu, X. M.; Deng, Y.; Sun, W.-H. C. R. Chim. 2006, 9, 1500.
doi: 10.1016/j.crci.2006.09.007 |
[45] |
Pelletier, J. D. A.; Champouret, Y. D. M.; Cadarso, J.; Clowes, L.; Gañete, M.; Singh, K.; Thanarajasingham, V.; Solan, G. A. J. Organomet. Chem. 2006, 691, 4114.
doi: 10.1016/j.jorganchem.2006.06.018 |
[46] |
Jie, S.; Zhang, S.; Sun, W. -H. Eur. J. Inorg. Chem. 2007, 5584.
|
[47] |
Zhang, M.; Hao, P.; Zuo, W. W.; Jie, S. Y.; Sun, W.-H. J. Organomet. Chem. 2008, 693, 483.
doi: 10.1016/j.jorganchem.2007.11.020 |
[48] |
Zhang, M.; Gao, R.; Hao, X.; Sun, W.-H. J. Organomet. Chem. 2008, 693, 3867.
doi: 10.1016/j.jorganchem.2008.09.046 |
[49] |
Wang, K.; Wedeking, K.; Zuo, W.; Zhang, D.; Sun, W.-H. J. Organomet. Chem. 2008, 693, 1073.
doi: 10.1016/j.jorganchem.2007.12.030 |
[50] |
Zhang, S.; Sun, W.-H.; Xiao, T. P.; Hao, X. Organometallics 2010, 29, 1168.
doi: 10.1021/om9010142 |
[51] |
Appukuttan, V. K.; Liu, Y.; Son, B. C.; Ha, C. S.; Suh, H.; Kim, I. Organometallics 2011, 30, 2285.
doi: 10.1021/om2000629 |
[52] |
Sun, W.-H.; Kong, S. L.; Chai, W. B.; Shiono, T.; Redshaw, C.; Hu, X. Q.; Guo, C. Y.; Hao, X. Appl. Catal. A Gen 2012, 447, 67.
|
[53] |
Ba, J. J.; Du, S. Z.; Yue, E. L.; Hu, X. Q.; Flisak, Z.; Sun, W.-H. RSC Adv. 2015, 5, 32720.
doi: 10.1039/C5RA04722F |
[54] |
Huang, F.; Zhang, W.; Yue, E.; Liang, T.; Hu, X.; Sun, W.-H. Dalton Trans. 2016, 45, 657.
doi: 10.1039/c5dt03779d pmid: 26619038 |
[55] |
Zhang, R.; Huang, Y.; Solan, G. A.; Zhang, W.; Hu, X.; Hao, X.; Sun, W.-H. Dalton Trans. 2019, 48, 8175.
doi: 10.1039/C9DT01345H |
[56] |
Han, M.; Zuo, Z.; Ma, Y.; Solan, G. A.; Hu, X.; Liang, T.; Sun, W.-H. RSC Adv. 2021, 11, 39869.
doi: 10.1039/D1RA07279J |
[57] |
Han, M.; Zhang, Q.; Oleynik, II; Suo, H.; Solan, G. A.; Oleynik, I. V.; Ma, Y.; Liang, T.; Sun, W.-H. Dalton Trans. 2020, 49, 4774.
doi: 10.1039/D0DT00576B |
[58] |
Suo, H.; Oleynik, I. V.; Oleynik, I. I.; Solan, G. A.; Ma, Y.; Liang, T.; Sun, W.-H. Polymer 2021, 213, 123294.
doi: 10.1016/j.polymer.2020.123294 |
[59] |
Zhang, R.; Oleynik, I. V.; Li, J.; Solan, G. A.; Ma, Y.; Jin, L.; Oleynik, I. I.; Hu, X.; Sun, W.-H. Eur. J. Inorg. Chem. 2021, 3956.
|
[60] |
Zuo, Z.; Han, M.; Ma, Y.; Solan, G. A.; Hu, X.; Liang, T.; Sun, W. H. Appl. Organomet. Chem. 2021, 36, 6500.
|
[61] |
Zada, M.; Guo, L.; Zhang, W.; Ma, Y.; Liang, T.; Sun, W.-H. Eur. J. Inorg. Chem. 2021, 720.
|
[62] |
Han, M.; Oleynik, I. I.; Ma, Y.; Oleynik, I. V.; Solan, G. A.; Liang, T.; Sun, W.-H. Appl. Organomet. Chem. 2021, 35, 6429
|
[63] |
Karam, A.; Tenia, R.; Martinez, M.; Lopez-Linares, F.; Albano, C.; Diaz-Barrios, A.; Sanchez, Y.; Catari, E.; Casas, E.; Pekerar, S.; Albornoz, A. J. Mol. Catal. A: Chem. 2007, 265, 127.
doi: 10.1016/j.molcata.2006.09.048 |
[64] |
Abbo, H. S.; Titinchi, S. J. J. Catal. Lett. 2010, 139, 90.
doi: 10.1007/s10562-010-0416-y |
[65] |
Ngcobo, M.; Nyamato, G. S.; Ojwach, S. O. Mol. Catal. 2019, 478, 110590.
|
[66] |
Champouret, Y.; Hashmi, O. H.; Visseaux, M. Coord. Chem. Rev. 2019, 390, 127.
doi: 10.1016/j.ccr.2019.03.015 |
[67] |
Takeuchi, M.; Shiono, T.; Soga, K. Polym. Int. 1992, 29, 209.
doi: 10.1002/pi.4990290310 |
[68] |
Ricci, G.; Forni, A.; Boglia, A.; Motta, T.; Zannoni, G.; Canetti, M.; Bertini, F. Macromolecules 2005, 38, 1064.
doi: 10.1021/ma0476083 |
[69] |
Ricci, G.; Leone, G.; Boglia, A.; Boccia, A. C.; Zetta, L. Macromolecules 2009, 42, 9263.
doi: 10.1021/ma901864e |
[70] |
Ricci, G.; Leone, G.; Pierro, I.; Zanchin, G.; Forni, A. Molecules 2019, 24, 2308.
doi: 10.3390/molecules24122308 |
[71] |
Ricci, G.; Leone, G.; Zanchin, G.; Palucci, B.; Forni, A.; Sommazzi, A.; Masi, F.; Zacchini, S.; Guelfi, M.; Pampaloni, G. Molecules 2021, 26, 4067.
doi: 10.3390/molecules26134067 |
[72] |
Liu, H.; Wang, F.; Jia, X. Y.; Liu, L.; Bi, J. F.; Zhang, C. Y.; Zhao, L. P.; Bai, C. X.; Hu, Y. M.; Zhang, X. Q. J. Mol. Catal. A: Chem. 2014, 391, 25.
doi: 10.1016/j.molcata.2014.04.008 |
[73] |
Dai, Q.; Jia, X.; Yang, F.; Bai, C.; Hu, Y.; Zhang, X. Polymers 2016, 8, 12.
doi: 10.3390/polym8010012 |
[74] |
Guo, L.; Jing, X.; Xiong, S.; Liu, W.; Liu, Y.; Liu, Z.; Chen, C. Polymers 2016, 8, 389.
doi: 10.3390/polym8110389 |
[75] |
Zhu, G.; Zhang, X.; Zhao, M.; Wang, L.; Jing, C.; Wang, P.; Wang, X.; Wang, Q. Polymers 2018, 10, 934.
doi: 10.3390/polym10090934 |
[76] |
Wang, X.; Fan, L.; Huang, C.; Liang, T.; Guo, C.-Y.; Sun, W.-H. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3609.
doi: 10.1002/pola.28247 |
[77] |
Alnajrani, M. N.; Mair, F. S. Dalton Trans. 2016, 45, 10435.
doi: 10.1039/c6dt01064d pmid: 27264840 |
[78] |
Fang, L.; Zhao, W. P.; Han, C.; Liu, H.; Hu, Y. M.; Zhang, X. Q. Eur. J. Inorg. Chem. 2019, 609.
|
[79] |
Zhang, X. H.; Zhu, G. Q.; Mahmood, Q.; Zhao, M. M.; Wang, L.; Jing, C. Y.; Wang, X. W.; Wang, Q. G.
doi: 10.1002/pola.29323 |
[80] |
Lin, W. H.; Zhang, L. P.; Suo, H. Y.; Vignesh, A.; Yousuf, N.; Hao, X.; Sun, W.-H. New J. Chem. 2020, 44, 8076.
doi: 10.1039/D0NJ00942C |
[81] |
Liu, L.; Wang, F.; Zhang, C.; Liu, H.; Wu, G.; Zhang, X. Mol. Catal. 2022, 517, 112044.
|
[82] |
Kim, J. S.; Ha, C.-S.; Kim, I. e-Polymers 2006.
|
[83] |
Appukuttan, V.; Zhang, L.; Ha, C. S.; Kim, I. Polymer 2009, 50, 1150.
doi: 10.1016/j.polymer.2008.12.047 |
[84] |
Appukuttan, V.; Zhang, L.; Ha, J. Y.; Chandran, D.; Bahuleyan, B. K.; Ha, C. S.; Kim, I. J. Mol. Catal. A: Chem. 2010, 325, 84.
doi: 10.1016/j.molcata.2010.04.002 |
[85] |
Cariou, R.; Chirinos, J. J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Britovsek, G. J.; White, A. J. Dalton Trans. 2010, 39, 9039.
doi: 10.1039/c0dt00402b pmid: 20725692 |
[86] |
Gong, D.; Jia, X. Y.; Wang, B. L.; Zhang, X. Q.; Jiang, L. S. J. Organomet. Chem. 2012, 702, 10.
doi: 10.1016/j.jorganchem.2011.11.025 |
[87] |
Nobbs, J. D.; Tomov, A. K.; Cariou, R.; Gibson, V. C.; White, A. J.; Britovsek, G. J. Dalton Trans. 2012, 41, 5949.
doi: 10.1039/c2dt30324h |
[88] |
Gong, D.; Jia, W. G.; Chen, T.; Huang, K. W. Appl. Catal. A Gen. 2013, 464, 35.
|
[89] |
Gong, D.; Liu, W.; Pan, W.; Chen, T.; Jia, X.; Huang, K.-W.; Zhang, X. J. Mol. Catal. A: Chem. 2015, 406, 78.
doi: 10.1016/j.molcata.2015.05.013 |
[90] |
He, A.; Wang, G.; Zhao, W.; Jiang, X.; Yao, W.; Sun, W.-H. Polym. Int. 2013, 62, 1758.
doi: 10.1002/pi.4490 |
[91] |
Alnajrani, M. N.; Mair, F. S. RSC Adv. 2015, 5, 46372.
doi: 10.1039/C5RA06792H |
[92] |
Liu, W.; Pan, W. J.; Wang, P.; Li, W.; Mu, J. S.; Weng, G. S.; Jia, X. Y.; Gong, D.; Huang, K. W. Inorg. Chim. Acta 2015, 436, 132.
doi: 10.1016/j.ica.2015.07.033 |
[93] |
Chen, H.; Pan, W.; Huang, K.-W.; Zhang, X.; Gong, D. Polym. Chem. 2017, 8, 1805.
doi: 10.1039/C7PY00252A |
[94] |
Zhao, J.; Chen, H.; Li, W.; Jia, X.; Zhang, X.; Gong, D. Inorg. Chem. 2018, 57, 4088.
doi: 10.1021/acs.inorgchem.8b00270 |
[95] |
Gong, D.; Ying, W. L.; Zhao, J. Y.; Li, W. X.; Xu, Y. C.; Luo, Y. J.; Zhang, X. Q.; Capacchione, C.; Grassi, A. J. Catal. 2019, 377, 367.
doi: 10.1016/j.jcat.2019.07.025 |
[96] |
Endo, K.; Kitagawa, T.; Nakatani, K. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4088.
doi: 10.1002/pola.21494 |
[97] |
Gong, D.; Wang, B. L.; Jia, X. Y.; Zhang, X. Q. Dalton Trans. 2014, 43, 4169.
doi: 10.1039/c3dt52708e |
[98] |
Chen, L.; Ai, P. F.; Gu, J. M.; Jie, S. Y.; Li, B. G. J. Organomet. Chem. 2012, 716, 55.
doi: 10.1016/j.jorganchem.2012.05.051 |
[99] |
Ai, P. F.; Chen, L.; Guo, Y. T.; Jie, S. Y.; Li, B. G. J. Organomet. Chem. 2012, 705, 51.
doi: 10.1016/j.jorganchem.2012.01.013 |
[100] |
Yang, D.; Gan, Q.; Chen, H.; Ying, W.; Zhao, J.; Jia, X.; Gong, D. Inorg. Chim. Acta 2019, 496, 119046.
doi: 10.1016/j.ica.2019.119046 |
[101] |
Alt, F. P.; Heitz, W. Macromol. Chem. Phys. 1998, 199, 1951.
doi: 10.1002/(SICI)1521-3935(19980901)199:9【-逻*辑*与-】#x00026;lt;1951::AID-MACP1951【-逻*辑*与-】#x00026;gt;3.0.CO;2-M |
[102] |
Pelascini, F.; Peruch, F.; Lutz, P. J.; Wesolek, M.; Kress, J. Macromol. Rapid Commun. 2003, 24, 768.
doi: 10.1002/marc.200350023 |
[103] |
Pelascini, F.; Peruch, F.; Lutz, P. J.; Wesolek, M.; Kress, J. Y. Macromol. Symp. 2004, 213, 265.
doi: 10.1002/masy.200450924 |
[104] |
Sato, Y.; Nakayama, Y.; Yasuda, H. J. Organomet. Chem. 2004, 689, 744.
doi: 10.1016/j.jorganchem.2003.11.024 |
[105] |
Bao, F.; Lü, X.; Qiao, Y.; Gui, G.; Gao, H.; Wu, Q. Appl. Organomet. Chem. 2005, 19, 957.
doi: 10.1002/aoc.928 |
[106] |
Zhang, D.; Yue, Q.; Wang, J. Y.; Shigeng, G. W.; Weng, L. H. Inorg. Chem. Commun. 2009, 12, 1193.
doi: 10.1016/j.inoche.2009.09.016 |
[107] |
Benade, L. L.; Ojwach, S. O.; Obuah, C.; Guzei, I. A.; Darkwa, J. Polyhedron 2011, 30, 2878.
doi: 10.1016/j.poly.2011.08.021 |
[108] |
Bahuleyan, B. K.; Chandran, D.; Kwak, C. H.; Ha, C.-S.; Kim, I. Macromol. Res. 2008, 16, 745.
doi: 10.1007/BF03218590 |
[109] |
Abu-Surrah, A. S.; Ibrahim, K. A.; Abdel-Halim, H. M. Transition Met. Chem. 2009, 34, 803.
doi: 10.1007/s11243-009-9266-0 |
[110] |
Abu-Surrah, A. S.; Al-Degs, Y. S. J. Appl. Polym. Sci. 2010, 117, 2316.
doi: 10.1002/app.32072 |
[111] |
Jia, X. Y.; Li, W. X.; Zhao, J. Y.; Yi, F. Y.; Luo, Y. J.; Gong, D. Organometallics 2019, 38, 278.
doi: 10.1021/acs.organomet.8b00708 |
[112] |
Park, S.; Lee, J.; Lee, H.; Jeong, A. R.; Min, K. S.; Nayab, S. Appl. Organomet. Chem. 2019, 33. 4766.
|
[113] |
Lee, J.; Kim, K.; Lee, H.; Nayab, S. Polyhedron 2021, 196, 115003.
doi: 10.1016/j.poly.2020.115003 |
[114] |
Kim, I.; Hwang, J.-M.; Lee, J. K.; Ha, C. S.; Woo, S. I. Macromol. Rapid Commun. 2003, 24, 508.
doi: 10.1002/marc.200390075 |
[115] |
Yliheikkila, K.; Lappalainen, K.; Castro, P. M.; Ibrahim, K.; Abu-Surrah, A.; Leskela, M.; Repo, T. Eur. Polym. J. 2006, 42, 92.
doi: 10.1016/j.eurpolymj.2005.07.009 |
[116] |
Yang, M.; Park, W. J.; Yoon, K. B.; Jeong, J. H.; Lee, H. Inorg. Chem. Commun. 2011, 14, 189.
doi: 10.1016/j.inoche.2010.10.019 |
[117] |
Ahn, S. H.; Choi, S. I.; Jung, M. J.; Nayab, S.; Lee, H. J. Mol. Struct. 2016, 1113, 24.
doi: 10.1016/j.molstruc.2016.02.022 |
[1] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[2] | 曾崇洋, 胡平, 汪必琴, 方文彦, 赵可清. 氰基二苯乙烯桥联苯并菲二联体刺激响应盘状液晶: 合成、性质与应用[J]. 有机化学, 2023, 43(9): 3287-3296. |
[3] | 李阳, 袁锦鼎, 赵頔. 低共熔溶剂1,3-二甲基脲/L-(+)-酒石酸中(E)-2-苯乙烯基喹啉-3-羧酸类衍生物的绿色合成[J]. 有机化学, 2023, 43(9): 3268-3276. |
[4] | 王玉超, 刘晋彪, 何智涛. 钯催化共轭二烯的不对称氢官能团化[J]. 有机化学, 2023, 43(8): 2614-2627. |
[5] | 张彦波, 孙萌. 铑催化碳酸亚乙烯酯与吲哚啉C(7)位C—H甲酰甲基化反应[J]. 有机化学, 2023, 43(8): 2905-2912. |
[6] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[7] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[8] | 王余, 陈艺方, 罗鑫, 邢志富, 彭菊, 陈吉祥. 新型2-氰基丙烯酸酯(酰胺)类衍生物的设计合成及杀线虫活性研究[J]. 有机化学, 2023, 43(6): 2206-2216. |
[9] | 刘铃, 浩涛涛, 伍晚花, 杨成. 利用超分子策略构筑具有聚集诱导发光(AIE)功能的二苯乙烯型分子开关[J]. 有机化学, 2023, 43(6): 2189-2196. |
[10] | 南江, 黄冠杰, 胡岩, 王波. 钌催化喹唑啉酮与碳酸亚乙烯酯的C—H [4+2]环化反应[J]. 有机化学, 2023, 43(4): 1537-1549. |
[11] | 李进京, 孙立娇, 赵岩, 史成阳. β-硝基苯乙烯参与的反应研究进展[J]. 有机化学, 2023, 43(12): 4168-4187. |
[12] | 马伟源, 戴惠芳, 亢少林, 张天麟, 舒兴中. 芳基乙烯基硅烷与芳基卤代物的Hiyama偶联反应[J]. 有机化学, 2023, 43(10): 3614-3622. |
[13] | 余富欢, 周志宽, 谢威, 周传庭, 盖立志, 卢华. 硅烷桥联四苯乙烯-寡聚噻吩衍生物的结构与光谱性质[J]. 有机化学, 2023, 43(10): 3652-3660. |
[14] | 赵怡玲, 陈志康, 李磊, 刘聪磊, 朱红平. 硅宾/有机铝的Lewis酸碱对体系及其丙烯酸酯聚合的引发性能[J]. 有机化学, 2023, 43(10): 3590-3597. |
[15] | 张继东, 颜婉琳, 胡文强, 郭典, 张大龙, 权校昕, 卜贤盼, 陈思宇. 一种具有聚集诱导发光性能的Zn2+荧光探针的设计合成[J]. 有机化学, 2023, 43(1): 326-331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||